L

X KN = FIFO =

FIFO Queues

are 2! You Need for Cache Eviction

Juncheng Yang
Yazhuo Zhang, Ziyue Qiu, Yao Yue, K. V. Rashmi

Carnegie .
University Parallel Data Laboratory

EMORY

UNIVERSITY

Software cache and eviction

e Ubiquitous deployments of software caches
® page cache, block cache, database cache m traffic:server””
e key-value cache, object cache...

“ VARNISH
e Cache metrics o
o cfficiency / effectiveness: miss ratio /_\
e throughput and scalability: requests/sec ey A LUXIO

e simplicity Cachelib Pelikan

e A core component of cache design: eviction

A long history of research centered around LRU

¢ | east-recently-used (LRU)

® maintain objects in a queue with last-access order
e update metadata (with locking) on each read request

® Problems

e not scalable
e not scan-resistant

A long history of research centered around LRU

e Improve LRU's efficiency

e add more techniques/queues/metrics: LIRSISIGVMETRICS02] | RU-KISIGMOD'93] 2QIVLDB'94] M QIATC01],
ARC[FAST’O3], TinyLFU[TOS’W], LRB[NSDI’ZO], CACHEUSIFAST21]
e sacrifice throughput and/or scalability

e Improve LRU's throughput and scalability

e reduce #operations/locks per-request: relaxed LRU, CLOCK variantsINSPI'"13], FrozenHot[Eurosys23]

e conventional wisdom: sacrifice efficiency, our findinglHot0523] shows not true

¢ State-of-the-arts: tradeoff between efficiency and throughput

: %&: [HotOS’23] FIFO queues

*fﬁfﬁ can be better than LRU

An alternative: FIFO eviction algorithm

¢ First-in-first-out (FIFO)

e simpler

¢ fewer metadata

* less computation The only drawback:

* more scalable FIFO has a high miss ratio

¢ flash-friendly

Can we design an efficient
FIFO-based algorithm?

Observation

More one-hit wonders than you would have expected

¢ One-hit wonder: objects appeared once in the sequence
e Zipfian workloads: One-hit-wonder ratio decreases with sequence length (measured in #obj)
e \Why short sequences? A cache starts eviction after seeing a short request sequence

time 1 10 11 12 13 14 15 16 17
s 00D O0C0000 L0000
sequence length

. # one-hit wonder | one-hit wonder ratio
(# objects)

start time end time

1 17 5 1 (E) 20%
1 7 4 2 (C, D) 50%
1 4 3 2 (B, C) 66%

Observation

More one-hit wonders than you would have expected

¢ One-hit wonder: objects appeared once in the sequence

e Zipfian workloads: One-hit-wonder ratio decreases with sequence length (measured in #obj)

e \Why short sequences? A cache starts eviction after seeing a short request sequence

-

the one-hit-wonder ratio of 10% of week-long traces:
72% (mean on 6594 traces)

o

Observation

most objects in the cache are one-hit wonders

hd)

O 1.00- 0 1.00-

QL D

5 g

- 0.75 - 0.75

J))

o e -

— O

> 0.50 > 0.50 <

))

Y Y

@) o)

c 0.25 req |2 c 0.25

O req |2 2

E -)

O req O

© 0.00 © 0.00

L 001 0.1 0.5 L 0.01 0.1 0.5
Cache size (fraction of objects in the trace) Cache size (fraction of objects in the trace)

LRU cache running MSR workload LRU cache running Twitter workload

S3-FIFO Design

Simple, Scalable caching with three Static FIFO queues

%S

https://s3fifo.com @ Xy

10

https://s3fifo.com

S3-FIFO design

Simple, Scalable eviction algorithm with three Static FIFO queues

eon cache miss

1f not 1n ghost, else

l e on eviction

struct object {

aintS t cnt:2; A1t cgt T
} _ . eviction
main FIFO (90% space)| else
reinsert
cnt—-

c on cache hit 1f cnt <= 1, else
cnt++ ‘

1 *using 1-bit flag also is sufficient for most workloads

S3-FIFO features

» Simple and robust: static queues

» Fast. no metadata update for most requests
» Scalable: no lock

 Tiny metadata: 2 bits

* Flash-friendly: sequential writes

S3-FIFO evaluation

Evaluation setup

e Data

e 14 datasets, 6594 traces from Twitter, Meta, Microsoft, Wikimedia, Tencent, Alibaba, major CDNs...
e 848 billion requests, 60 billion objects

e collected between 2007 and 2023
¢ block, key-value, object caches

e Platform
e |[ibCacheSim, cachelib

e (CloudLab with 1 million core-hours ,(QKE =
o S
AOH libCacheSim

e Data and software are all open-sourced

e Metric
e miss ratio reduction from FIFO C léu d La b

e throughput in Mops/sec

14

Efficiency

Miss ratio reduction distribution across all traces

« P10 P25 Median Mean P75 » P90

O
1N

—
W

©
-

O
©

Miss ratio reduction from FIFO
o
N

15

Efficiency

Miss ratio reduction distribution across all traces

« P10 P25 Median Mean P75 » P90

O
1N

—
w

©
=

O
©

Miss ratio reduction from FIFO
o
N

16

Efficiency

Miss ratio reduction distribution across all traces

O < P10 P25 Median Mean P75 » P90
T 0.4 ;
S >
> b
£0.3 i >, > P
- P
O > i
s 0.2 5 "
O
£0.1
fe
0.0 | « - « 4« « 1 < >
Vp])
= O ¢ Jd® 10 SR N\ e & @ |V
A NS AL S S VSl LS S S
o < N\

17

Efficiency

Miss ratio reduction distribution across all traces

O < P10 P25 Median Mean P75 » P90
T 0.4
S >

> >
£0.3 i >, > P
O > L
5 0.2 " "
O
£0.1
fe
0.0 | « - « 4« « 1 2 >
Vp])
-— QO Q\S) \ Q\(D Q Q\Q Q\C \3‘3 A \S, S C@ Q\O Q\O
= o (WO g R 8T T a0 e Y

»(\(\\; P Q\QO

More efficient than state-of-the-art algorithms, up to 72% lower miss ratio than LRU

18

Efficiency

Mean miss ratio reduction on each dataset

S3-FIFO yet to be shown @ ARC 2Q (O TinyLFU-0.1 A LIRS p CACHEUS <« LHD

Wikimedia CDN- > < " 1@
Meta CDNi = QAN ®
TencentPhoto CDN: < A @ P
CDN2 <L (@
CDN1 @, A
Twitter KV: O > @ <
Meta KV; O « A
Social Network KV; O i <
Alibaba (block) @ A B
Tencent (block) > @\ O
Systor (block); < > O @& A
CloudPhysics (block); > @,
MSR (block) O A®
fiu (block) > @ 40 A

0.00 0.05 0.10 0.15 0.20 0.25
Miss ratio reduction from FIFO

19

Efficiency

Mean miss ratio reduction on each dataset

Y S3-FIFO @ ARC 2Q () TinyLFU-0.1 A LIRS p CACHEUS <« LHD

Wikimedia CDN- > 4 oY%
Meta CON| <« Qi@ Y
TencentPhoto CDN- < A @ D*
CDN2 @ Y%
CDN1 Obr\ [@ Y
Twitter KV O > @ *
Meta KV O -« v 1'
Social Network KV; O & 4*
Alibaba (block) OPA
Tencent (block) g A
Systor (block) < > ﬁO e A
CloudPhysics (block); > g
MSR (block) O
fiu (block)| >) 4 A

0.00 0.05 0.10 0.15 0.20 0.25
Miss ratio reduction from FIFO

o efficient: the best algorithm or is close to the best
e robust: the best on 10 of the 14 datasets

Throughput and scalability

Zipf workloads

)
N
o

W
N

Throughput (Mops/sec

N
+

 —
e

o

—4x—S53-FIFO
LRU

——¥-Segcache

Optimized LRU
Optimized TinyLFU

Z

7

2

-

4 8

Number of threads

16

21

¢ the fastest on a single
thread

® more scalable than
optimized LRU, 6x higher
throughput

¢ close to SegcachelNsPI21]

More In the paper

e Why S3-FIFO is effective
e |mplication for flash cache
e Byte miss ratio results

e |mpact of FIFO sizes
e \What if we replace FIFO with LRU

22

| e

Takeaway — IRU =) — FIFO =)

e Cache workloads exhibit high one-hit-wonder ratio
e most objects in the cache are not re-accessed before being evicted

e critical to remove the one-hit wonders early

e S3-FIFO: simple, scalable caching with three static FIFO queues
e reinsertion to keep popular objects, a small FIFO queue to quickly filter out one-hit wonders
e adoption
e being evaluated at Google, VMWare, Cloudflare, Kuaishou, etc.
e Python/C++/Rust version of S3-FIFO on GitHub implemented by external parties

https //s3fifo.com

https //github.com/Thesys-lab/
sosp23-s3fifo

uncheny@cs.cmu A0
uncheny@cs.cmu.edu 'l‘FF:r
23 @s‘u

https://s3fifo.com
https://github.com/Thesys-lab/sosp23-s3fifo
https://github.com/Thesys-lab/sosp23-s3fifo
mailto:juncheny@cs.cmu.edu

24

