
A large scale analysis of hundreds of
in-memory cache clusters at Twitter

Juncheng Yang, Yao Yue, Rashmi Vinayak
Carnegie Mellon University & Twitter

Background
In-memory caching is ubiquitous in the modern web services
To reduce latency, increase throughput, reduce backend load

User info

Timeline

Ads

2

How are in-memory caches used?
Do existing assumptions still hold?

Cache use cases

Types of operations

Object size distribution and evolution

Time-to-live (TTL) and working set

4

In-memory caches at Twitter

● Single tenant, single layer
○ Container-based deployment

● Large scale deployment
○ 100s cache clusters

○ 1s billion QPS

○ 100s TB DRAM

○ 100,000s CPU cores

5

Cache use cases

● Caching for storage
○ Most common and use most resources

● Caching for computation
○ Increasingly common
○ Machine learning, stream processing

● Transient data with no backing store
○ Rate limiters
○ Negative caches

6

Trace collection and open source

● Week-long unsampled traces from one instance of each
Twemcache cluster
○ 700 billion requests, 80 TB in size

○ Focus on 54 representative clusters

● Traces are open source
○ https://github.com/twitter/cache-trace

○ https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

7

https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

Types of operations

11

Types of operations
get/set are most common 35% of clusters are write-heavy (30%)

Optimize for write-heavy workloads
● Challenging: scalability, tail latency

cas: compare and set

Write heavy

Optimize for less frequent operations

12

Object size

16

Object size
Object sizes are small
● 25% cluster mean object size < 100 bytes
● Median 230 bytes

Overhead of metadata
● Memcached uses 56 bytes per-obj metadata
● Research systems often add more metadata

Value/key size ratio can be small
● 15% cluster value size <= key size
● 50% cluster value size <= 5 x key size

Small value/key size ratio
● Name spaces are part of keys

○ Ns1:ns2:obj or obj/ns1/ns2
● Robust and lightweight key compression

key size
is large

17

Dynamic size distribution

18

Size distribution over time

Size distribution can be static Most of the time, it is not static
The workload below shows a diurnal patterns

19

Bright color: more requests are for
objects of that size in the time window

Size distribution over time

Sudden changes are not rare

20

Size distribution changes make memory management difficult
● Sub-optimal slab migration
● Innovations needed on better strategies

Time-to-live (TTL)

22

● TTLs are set during writes
● Expired objects cannot be served

TTL use cases and usages

● Bounding inconsistency
○ Cache updates are best-effort

● Periodic refresh
○ Computation

● Implicit deletion
○ Rate limiter
○ GDPR

TTLs are usually short

24

Short TTLs lead to bounded working set sizes

There is no need for a huge cache size if expired objects can be removed in time

25

Implications of short TTLs
● Existing TTL expiration approaches

○ Remove upon next access
○ Transient object pool
○ Scanning full cache
○ Sampling

● Existing approaches are not sufficient

● Innovation needed on efficient TTL expiration

26

33

More in the paper

Production statistics
● Small miss ratio and small variations

● Request spikes are not always caused by hot keys

Object popularity
● Mostly Zipfian with large parameter alpha

● Small deviations

Eviction algorithms
● Highly workload dependent

● Four types of results

● FIFO achieves similar miss ratios as LRU

Non-trivial fraction of write-heavy workloads

Small objects, expensive metadata

Dynamic object size distribution

Wide TTL usage, proactive expiration > eviction

Traces are available at
https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20 Contact: juncheny@cs.cmu.edu 34

https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

36

37

