A large scale analysis of hundreds of in-memory cache clusters at Twitter

Juncheng Yang, Yao Yue, Rashmi Vinayak Carnegie Mellon University & Twitter

Background

In-memory caching is ubiquitous in the modern web services

To reduce latency, increase throughput, reduce backend load

How are in-memory caches used? Do existing assumptions still hold?

Cache use cases

Types of operations

Object size distribution and evolution

Time-to-live (TTL) and working set

In-memory caches at Twitter

- Single tenant, single layer
 - Container-based deployment
- Large scale deployment
 - 100s cache clusters
 - 1s billion QPS
 - 100s TB DRAM
 - 100,000s CPU cores

Cache use cases

- Caching for storage
 - Most common and use most resources
- Caching for computation
 - Increasingly common
 - Machine learning, stream processing
- Transient data with no backing store
 - Rate limiters
 - Negative caches

Trace collection and open source

- Week-long **unsampled** traces from one instance of **each** Twemcache cluster
 - 700 billion requests, 80 TB in size
 - Focus on 54 representative clusters
- Traces are open source
 - https://github.com/twitter/cache-trace
 - <u>https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20</u>

Types of operations

Types of operations

35% of clusters are write-heavy (30%)

Optimize for write-heavy workloads

• Challenging: scalability, tail latency

Object size

Object size

Object sizes are small

- 25% cluster mean object size < 100 bytes
- Median 230 bytes

Overhead of metadata

- Memcached uses 56 bytes per-obj metadata
- Research systems often add more metadata

Value/key size ratio can be small

- 15% cluster value size <= key size
- 50% cluster value size <= 5 x key size

Small value/key size ratio

- Name spaces are part of keys
 - Ns1:ns2:obj or obj/ns1/ns2
- Robust and lightweight key compression

Dynamic size distribution

Size distribution can be static

Bright color: more requests are for

Most of the time, it is not static The workload below shows a diurnal patterns

Size distribution over time

Sudden changes are not rare

Size distribution changes make memory management difficult

- Sub-optimal slab migration
- Innovations needed on better strategies

Time-to-live (TTL)

- TTLs are set during writes
- Expired objects cannot be served

TTL use cases and usages

- Bounding inconsistency
 - Cache updates are best-effort
- Periodic refresh
 - Computation
- Implicit deletion
 - Rate limiter
 - GDPR

TTLs are usually short

Short TTLs lead to bounded working set sizes

There is no need for a huge cache size if expired objects can be removed in time

Implications of short TTLs

- Existing TTL expiration approaches
 - Remove upon next access
 - Transient object pool
 - Scanning full cache
 - Sampling
- Existing approaches are not sufficient
- Innovation needed on efficient TTL expiration

More in the paper

Production statistics

- Small miss ratio and small variations
- Request spikes are not always caused by hot keys

Object popularity

- Mostly Zipfian with large parameter alpha
- Small deviations

Eviction algorithms

- Highly workload dependent
- Four types of results
- FIFO achieves similar miss ratios as LRU

Non-trivial fraction of write-heavy workloads

Small objects, expensive metadata

Dynamic object size distribution

Wide TTL usage, proactive expiration > eviction

Traces are available at <u>https://github.com/twitter/cache-trace</u> <u>https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20</u>

Contact: juncheny@cs.cmu.edu 34