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Background
In-memory caching is ubiquitous in the modern web services
To reduce latency, increase throughput, reduce backend load 
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How are in-memory caches used? 
Do existing assumptions still hold? 

Cache use cases

Types of operations 

Object size distribution and evolution 

Time-to-live (TTL) and working set 
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In-memory caches at Twitter

● Single tenant, single layer 
○ Container-based deployment 

● Large scale deployment
○ 100s cache clusters 

○ 1s billion QPS 

○ 100s TB DRAM 

○ 100,000s CPU cores 

5



Cache use cases

● Caching for storage 
○ Most common and use most resources 

● Caching for computation 
○ Increasingly common 
○ Machine learning, stream processing 

● Transient data with no backing store
○ Rate limiters 
○ Negative caches 
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Trace collection and open source

● Week-long unsampled traces from one instance of each
Twemcache cluster 
○ 700 billion requests, 80 TB in size 

○ Focus on 54 representative clusters 

● Traces are open source
○ https://github.com/twitter/cache-trace

○ https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20
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Types of operations
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Types of operations
get/set are most common 35% of clusters are write-heavy (30%)

Optimize for write-heavy workloads 
● Challenging: scalability, tail latency 

cas: compare and set

Write heavy

Optimize for less frequent operations 
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Object size
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Object size
Object sizes are small
● 25% cluster mean object size < 100 bytes 
● Median 230 bytes 

Overhead of metadata
● Memcached uses 56 bytes per-obj metadata 
● Research systems often add more metadata 

Value/key size ratio can be small
● 15% cluster value size <= key size
● 50% cluster value size <= 5 x key size

Small value/key size ratio 
● Name spaces are part of keys

○ Ns1:ns2:obj or obj/ns1/ns2
● Robust and lightweight key compression 

key size 
is large
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Dynamic size distribution

18



Size distribution over time

Size distribution can be static Most of the time, it is not static
The workload below shows a diurnal patterns
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Bright color: more requests are for 
objects of that size in the time window



Size distribution over time

Sudden changes are not rare
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Size distribution changes make memory management difficult 
● Sub-optimal slab migration 
● Innovations needed on better strategies 



Time-to-live (TTL)
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● TTLs are set during writes 
● Expired objects cannot be served 



TTL use cases and usages

● Bounding inconsistency 
○ Cache updates are best-effort

● Periodic refresh 
○ Computation 

● Implicit deletion 
○ Rate limiter 
○ GDPR 

TTLs are usually short 
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Short TTLs lead to bounded working set sizes

There is no need for a huge cache size if expired objects can be removed in time
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Implications of short TTLs
● Existing TTL expiration approaches 

○ Remove upon next access
○ Transient object pool 
○ Scanning full cache 
○ Sampling 

● Existing approaches are not sufficient 

● Innovation needed on efficient TTL expiration
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More in the paper

Production statistics 
● Small miss ratio and small variations 

● Request spikes are not always caused by hot keys

Object popularity 
● Mostly Zipfian with large parameter alpha 

● Small deviations 

Eviction algorithms
● Highly workload dependent 

● Four types of results 

● FIFO achieves similar miss ratios as LRU 



Non-trivial fraction of write-heavy workloads 

Small objects, expensive metadata  

Dynamic object size distribution 

Wide TTL usage, proactive expiration > eviction 

Traces are available at 
https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20 Contact: juncheny@cs.cmu.edu 34
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