A large scale analysis of hundreds of
in-memory cache clusters at Twitter

Juncheng Yang, Yao Yue, Rashmi Vinayak

Carnegie Mellon University & Twitter

ellon Uni
, gs ho I fC ompu t Science



Background

In-memory caching is ubiquitous in the modern web services
To reduce latency, increase throughput, reduce backend load

EIEIIII
=
EIEIIII

Timeline 00000

p&— 7 —

Ads IIIIIIIII m
2




How are in-memory caches used?

Do existing assumptions still hold?

Cache use cases
Types of operations
Object size distribution and evolution

Time-to-live (TTL) and working set



In-memory caches at Twitter

e Single tenant, single layer

o Container-based deployment

e Large scale deployment

©)

©)

©)

100s cache clusters
1s billion QPS

100s TB DRAM
100,000s CPU cores



Cache use cases

e Caching for storage

M storage NN computation BN transient
o Most common and use most resources

=
o
o

e Caching for computation

o Increasingly common
o Machine learning, stream processing

o
N
u

2
N
&)

Fraction of use case
o
()]
o

e Transient data with no backing store
o Rate limiters ” o

e
o Negative caches AV cequest et

o
o
<



Trace collection and open source

e Week-long unsampled traces from one instance of each
Twemcache cluster
o 700 billion requests, 80 TB in size

o Focus on 54 representative clusters

e T[races are open source

o https://github.com/twitter/cache-trace
o https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20



https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

Types of operations



Types of operations

get/set are most common

}31.00 g ©°
0 "
3 0.75;
O
Q
5 0.50 °
C
o o
J‘:)’()25 o
® : °
u'0_00.§1 L2 . a8 . __
~ L5 D o 0Dy obf S
STIE TS T
FLE8
g ’O&

Optimize for less frequent operations

cas: compare and set

35% of clusters are write-heavy (30%)

5 1.00

=

n

5 0.75-

3

< 0.50; \

kS

50.25 Write heavy
8

£0.00

0.00 0.25 0.50 0.75 1.00
Write ratio

Optimize for write-heavy workloads
e Challenging: scalability, tail latency

12



Object size



Object size

Object sizes are small

e 25% cluster mean object size < 100 bytes
e Median 230 bytes

A =
u N o
© w o

o
N
ul

Fraction of clusters (CDF)

o
o
=

102 103 10* 10°
Key+value size (byte)

Value/key size ratio can be small
e 15% cluster value size <= key size
e 50% cluster value size <= 5 x key size

.
o
o

key size I
is large |

e ©
u N
o u

=
N
ul

Fraction of clusters (CDF)

o
oo
S

1077 10° 10! 102 10°
Value/key size ratio

Overhead of metadata

e Memcached uses 56 bytes per-obj metadata
e Research systems often add more metadata

Small value/key size ratio
e Name spaces are part of keys
o Nsl:ns2:0bjoOrobj/nsl/ns2
e Robust and lightweight key compression

17



Dynamic size distribution



Size distribution over time

Size distribution can be static

Bright color: more requests are for
objects of that size in the time window

—_ 0.4
0114
2
= 0.3
N 79
(V)]
§ 0.2
g_ 55
@ 0.1
od
38
0.0

0 24 48 72 96 120144
Time (hour)

Most of the time, it is not static
The workload below shows a diurnal patterns

§97369 86866 -- --§UE
o]
g
‘% 15726 0.2
7
g
S 2540 0.1
o

410 0.0

0 24 48 72 96 120144
Time (hour)

19



Size distribution over time

Sudden changes are not rare

3657 46956
5 10.20 =
31470 3 7584
v 0.15 v
» 591 w1225
s 0.10 -
g g
o 237 o 198
&J 0.05 &J l
95 0.00 32
0 24 48 72 96 120144 0 24 48 72 96 120144
Time (hour) Time (hour)

Size distribution changes make memory management difficult
e Sub-optimal slab migration
e Innovations needed on better strategies

20



Time-to-live (TTL)

e TTLs are set during writes
e Expired objects cannot be served

22



TTL use cases and usages

T
o
&

e Bounding inconsistency
o Cache updates are best-effort

e
~
u

e Periodic refresh
o Computation

.
n
o

b o - ————————————— -

Fraction of clusters (CDF)

U | S R ) SN, P ——

e Implicit deletion 0.25
o Rate limiter 000, >2 day
o GDPR 102 103 10% 10° 10°

Mean TTL (s)

TTLs are usually short



Short TTLs lead to bounded working set sizes

S 20000 S 12000
Q Q
N 15000 N 9000
(7] ()]
% 10000 ¥ 6000 B b A
S o /l\~a\\j\1, J\,’. AP ;] L T
< 5000 Z 3000 , —— no-ttl
§ P g WEmn S G W e Say e G # § _-tt|

0 0

0 40 80 120 160 0 40 80 120 160
Time (hour) Time (hour)

There is no need for a huge cache size if expired objects can be removed in time

25



Implications of short TTLs

e Existing TTL expiration approaches

e Existing approaches are not sufficient

e Innovation needed on efficient TTL expiration

=
o

(o0]

(o)}

N

© o o o o
N

>6 hour

.

o

Fraction of clusters (CDF)

= =
N O
nn O

o
N
&)

=
=
=

Fraction of clusters (CDF)

102 104 10°
The smallest TTL (s)

=
U
o

10°

10* 102 10%® 10%
TTL range

26



More in the paper

Production statistics
e Small miss ratio and small variations

e Request spikes are not always caused by hot keys

Object popularity
e Mostly Zipfian with large parameter alpha

e Small deviations

Eviction algorithms
e Highly workload dependent
e Fourtypes of results

e FIFO achieves similar miss ratios as LRU

33



Non-trivial fraction of write-heavy workloads
Small objects, expensive metadata
Dynamic object size distribution

Wide TTL usage, proactive expiration > eviction

Traces are available at

https://qithub.com/twitter/cache-trace -
https://qgithub.com/Thesys-lab/cacheWorkloadAnalysisOSDI20 Contact.Juncheny@cs.cmu.edu 34



https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

36



37



