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Background

In-memory caching is ubiquitous in the modern web services
To reduce latency, increase throughput, reduce backend load
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How are in-memory caches used?

Do existing assumptions still hold?

Cache use cases
Types of operations
Object size distribution and evolution

Time-to-live (TTL) and working set



In-memory caches at Twitter

e Single tenant, single layer

o Container-based deployment

e Large scale deployment
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100s cache clusters
1s billion QPS

100s TB DRAM
100,000s CPU cores



Cache use cases

e Caching for storage

M storage NN computation BN transient
o Most common and use most resources
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e Caching for computation

o Increasingly common
o Machine learning, stream processing
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e Transient data with no backing store
o Rate limiters ” o
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Trace collection and open source

e Week-long unsampled traces from one instance of each
Twemcache cluster
o 700 billion requests, 80 TB in size

o Focus on 54 representative clusters

e T[races are open source

o https://github.com/twitter/cache-trace
o https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20



https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20

Types of operations



Types of operations

get/set are most common
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Optimize for less frequent operations

cas: compare and set

35% of clusters are write-heavy (30%)
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Optimize for write-heavy workloads
e Challenging: scalability, tail latency
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Object size



Object size

Object sizes are small

e 25% cluster mean object size < 100 bytes
e Median 230 bytes
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Value/key size ratio can be small
e 15% cluster value size <= key size
e 50% cluster value size <= 5 x key size
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Overhead of metadata

e Memcached uses 56 bytes per-obj metadata
e Research systems often add more metadata

Small value/key size ratio
e Name spaces are part of keys
o Nsl:ns2:0bjoOrobj/nsl/ns2
e Robust and lightweight key compression
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Dynamic size distribution



Size distribution over time

Size distribution can be static

Bright color: more requests are for
objects of that size in the time window
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Most of the time, it is not static
The workload below shows a diurnal patterns
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Size distribution over time

Sudden changes are not rare
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Size distribution changes make memory management difficult
e Sub-optimal slab migration
e Innovations needed on better strategies
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Time-to-live (TTL)

e TTLs are set during writes
e Expired objects cannot be served
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TTL use cases and usages
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e Bounding inconsistency
o Cache updates are best-effort
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e Periodic refresh
o Computation
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e Implicit deletion 0.25
o Rate limiter 000, >2 day
o GDPR 102 103 10% 10° 10°

Mean TTL (s)

TTLs are usually short



Short TTLs lead to bounded working set sizes
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There is no need for a huge cache size if expired objects can be removed in time
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Implications of short TTLs

e Existing TTL expiration approaches

e Existing approaches are not sufficient

e Innovation needed on efficient TTL expiration
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More in the paper

Production statistics
e Small miss ratio and small variations

e Request spikes are not always caused by hot keys

Object popularity
e Mostly Zipfian with large parameter alpha

e Small deviations

Eviction algorithms
e Highly workload dependent
e Fourtypes of results

e FIFO achieves similar miss ratios as LRU
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Non-trivial fraction of write-heavy workloads
Small objects, expensive metadata
Dynamic object size distribution

Wide TTL usage, proactive expiration > eviction

Traces are available at

https://qithub.com/twitter/cache-trace -
https://qgithub.com/Thesys-lab/cacheWorkloadAnalysisOSDI20 Contact.Juncheny@cs.cmu.edu 34



https://github.com/twitter/cache-trace
https://github.com/Thesys-lab/cacheWorkloadAnalysisOSDI20
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