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Abstract—Skyline queries are important in many application domains. In this paper, we propose a novel structure Skyline Diagram,

which given a set of points, partitions the plane into a set of regions, referred to as skyline polyominos. All query points in the same

skyline polyomino have the same skyline query results. Similar to kth-order Voronoi diagram commonly used to facilitate k nearest

neighbor (kNN) queries, skyline diagram can be used to facilitate skyline queries and many other applications. However, it may be

computationally expensive to build the skyline diagram. By exploiting some interesting properties of skyline, we present several efficient

algorithms for building the diagram with respect to three kinds of skyline queries, quadrant, global, and dynamic skylines. In addition,

we propose an approximate skyline diagram which can significantly reduce the space cost. Experimental results on both real and

synthetic datasets show that our algorithms are efficient and scalable.

Index Terms—Skyline, voronoi, diagram, queries

Ç

1 INTRODUCTION

SIMILARITY queries are fundamental queries in many
applications which retrieve similar objects given a

query object. One class of the similarity queries, kNN
queries, have been extensively studied which retrieve
the k nearest (or most similar) objects based on a prede-
fined distance or similarity metric. For objects with mul-
tiple attributes, the similarity or distance on different
attributes are typically aggregated with predefined
weights. In many scenarios, it may not be clear how to
define the relative weights in order to aggregate the
attributes. Skyline, also known as Maxima in computa-
tional geometry or Pareto in business management, is
important for multi-criteria decision making or multi-
attribute similarity retrieval. Without assuming any rela-
tive weights of the attributes, the skyline of a set of
multi-dimensional data points consists of all objects that
are not dominated by any others, i.e., no other objects
are better (or more similar to the query object) in at least
one dimension and at least as good (as similar) in all
dimensions.

Skyline Queries. There are many applications that skyline
queries may be desired. For instance, a physician who is
treating a heart disease patient may wish to retrieve similar
patients based on their demographic attributes and diagno-
sis test results in order to enhance and personalize the treat-
ment for the patient. A car dealer who wishes to price a
used car competitively may attempt to retrieve all similar
cars (competitors) on the market based on a set of attributes
such as mileage and year. For simplicity, we use the run-
ning example below to illustrate the skyline definition as
well as algorithm descriptions throughout the paper.

Consider a hotel manager who wishes to retrieve all com-
peting hotels that are similar to his/her hotel with respect
to price and distance to downtown. Fig. 1a illustrates a
dataset P ¼ fp1; p2; . . . ; p11g, each point representing a hotel
with two attributes: the distance to downtown and the
price. Fig. 1b shows the corresponding points in the two-
dimensional space.

Given a query hotel q ¼ ð10; 80Þ, if we only consider the
hotels with higher price and longer distance to downtown,
i.e., the points in the first quadrant with q as the origin, the
skyline points are p3; p8; p10 as shown in Fig. 1b (we refer to
this as quadrant skyline). If we consider all hotels, we can
compute the skyline in each quadrant independently, i.e.,
only considering dominance within each quadrant, and
take the union which is p3; p8; p10; p6; p11. We refer to this as
global skyline (Definition 3). Alternatively, if we consider the
absolute difference to the query point on each dimension,
hence a point can dominate another point in a different
quadrant, we have dynamic skyline (Definition 2). To com-
pute dynamic skyline, we can map all data points to the first
quadrant with q as the origin and the distance to q as the
mapping function, and then compute the traditional skyline
from all the mapped points. The mapped points with ti½j� ¼
jpi½j� � q½j�j þ q½j� on each dimension j are shown in Figs. 1c
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and 1d. It is easy to see that t6 and t11 are skyline in the
mapped space, which means p6 and p11 are the dynamic
skyline with respect to query q. We note that dynamic sky-
line is always a subset of global skyline since the mapped
points may dominate some points that are otherwise global
skyline.

Skyline Diagram. Given the importance of such skyline
queries, it is desirable to precompute the skyline for any
random query point to facilitate and expedite such queries
in real time. Voronoi diagram [5] is commonly used to com-
pute and facilitate kNN queries. Inspired by the Voronoi
diagram which captures the regions with same kNN query
results, we propose a fundamental structure in this paper,
referred to as skyline diagram, to capture the query regions
with the same skyline result and to facilitate skyline queries.

Given a set of points (seeds), Voronoi diagram (as shown
in Fig. 2) partitions the plane into a set of polygons corre-
sponding for each point, each query point in the region is
closer to the point than to any other points. These regions
are called Voronoi cells. In other words, the query points in
the same Voronoi cell have the same nearest neighbor which
is the point in the cell. For example, the query points in the
shaded region in Fig. 2 have p5 as the nearest neighbor. This
is the case of kNN query where k ¼ 1, similarly, kth-order
Voronoi diagram can be built for kNN queries (k > 1),
where the query points in each Voronoi cell have the same
kNN results (may not correspond to the point in the cell as
in the Voronoi diagram).

Analogously, given a set of points (seeds), our proposed
skyline diagram partitions the plane into a set of regions,
which we call skyline polyominos, and the query points in
each skyline polyomino have the same skyline results. Fig. 3
shows an example skyline diagram for quadrant skyline
queries given the same points. The query points in the
shaded region have the same skyline result of p8; p10.

Given the precomputed skyline diagram, skyline queries
can be quickly answered in real time. Because skyline dia-
gram is the Voronoi counterpart for skyline queries, it can be

used for other applications such as: 1) to facilitate the compu-
tation of reverse skyline queries [8], [29], similar to using Vor-
onoi diagram for reverse k nearest neighbor (RkNN) queries
[28], 2) to authenticate skyline results from outsourced com-
putation, similar to using Voronoi diagram for authenticating
kNN queries [31], and 3) to enable efficient Private Informa-
tion Retrieval (PIR) based skyline queries, similar to using
Voronoi diagram for PIR based kNNqueries [30].

Challenges. While there are many applications of skyline
diagram, it is non-trivial to compute the diagram. For quadrant
or global skyline queries, a straightforward approach is to
draw vertical and horizontal grid lines crossing each point,
which divides the plane into Oðn2Þ cells. We can easily show
that each of these cells has the same skyline since there are no
points within the cell that would change the dominance rela-
tionship of the points. Thus, we can compute the skyline for
each cell, each requiring OðnlognÞ time. The time complexity
of such a baseline algorithm isOðn3lognÞwhich is not efficient.

The time complexity of computing the skyline diagram
for dynamic skyline can be significantly higher. Because of
the mapping function, a straightforward approach is to
draw horizontal and vertical bisector lines of each pair of
points on each dimension, in addition to the grid lines cross-
ing each point. These resulting subcells are guaranteed to
have the same dynamic skyline since there are no points or
mapped points in each subcell that would change the domi-
nance relationship of the points. Since the plane is divided
into Oð n

2

� �2Þ subcells, such a baseline algorithm requires
Oðn5lognÞ complexity which is prohibitively high.

Contributions. In this paper, we formally define a novel
structure, skyline diagram, which enables precomputation of
skyline queries as well as other applications. We study the
skyline diagram with respect to three different skyline query
definitions, quadrant, global, and dynamic skyline, and pro-
pose efficient algorithms. To facilitate the presentation, we
focus on the algorithms for two-dimensional space first and if
not specifically mentioned, all time complexities refer to the
case of two dimensions, then briefly show that our proposed
algorithms are extensible to high-dimensional space in the
Appendix, which is available in the IEEE Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2019.2923914). We summarize our contribu-
tions as follows.

� We define a novel structure, skyline diagram, to
enable precomputation of skyline queries. The sky-
line diagram consists of skyline regions, referred to
as skyline polyominos, each of them corresponding
to the same set of skyline result.

Fig. 2. Voronoi diagram of kNN queries.

Fig. 3. Skyline diagram of quadrant skyline.

Fig. 1. A skyline example of hotels.
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� To compute the skyline diagram for quadrant/global
skyline, we present a baseline algorithm with Oðn3Þ
time complexity and define an important notion of
skyline cell. Furthermore, based on the observation
of some interesting properties, we propose two
improved Oðn3Þ algorithms, which perform much
better than the baseline algorithm in practice.
Finally, we quantify the exact relationship between
the skyline results of neighboring cells, and present
an Oðn2Þ sweeping algorithm which further
improves the performance.

� To compute the skyline diagram for dynamic sky-
line, we first present a baseline algorithm with Oðn5Þ
time complexity and define an important notion of
skyline subcell. Furthermore, based on the observa-
tion that dynamic skyline query result is a subset of
global skyline, we present an improved subset algo-
rithm utilizing the skyline diagram of global skyline,
which requires Oðn5Þ but is better in practice. Finally,
based on the relationship of the skyline results of
neighboring subcells, we present a scanning algo-
rithm which achieves Oðn4lognÞ time.

� To significantly reduce the space cost, we propose
the approximate skyline diagram by only requiring
each skyline polyomino to have approximately the
same skyline result. We present two heuristic algo-
rithms, Bottom-Up Merging (BUM) algorithm and
Top-Down Partitioning (TDP) algorithm, to effi-
ciently compute the approximate skyline diagram
with different tradeoffs.

� We conduct comprehensive experiments on real and
synthetic datasets. The experimental results show
our proposed algorithms are efficient and scalable
for both the exact skyline diagram and the approxi-
mate skyline diagram.

2 RELATED WORK

The skyline computation problem was first studied in
computational geometry [12] which focused on worst-case
time complexity. [11], [19] proposed output-sensitive algo-
rithms achieving Oðnlog vÞ in the worst-case where v is the
number of skyline points which is far less than n in general.
Since the introduction of the skyline operator by B€orzs€onyi
et al. [3], skyline has been extensively studied in the database
field [4], [8], [14], [18], [20], [21], [23], [25], [26], [27], [29], [32].

The most related works to our skyline diagram are the
“safe zone” for location-based skyline queries [6], [10], [13],
[16]. Huang et al. [10] proposed the first work on continuous
skyline query processing. Given a set of n data points
< xi; yi; vxi; vyi; pi1; . . . ; pim > ði ¼ 1; . . . ; nÞ, where xi and yi
are positional coordinates in two-dimensional space, vxi and
vyi are the velocity in the X and Y dimensions, while
pijðj ¼ 1; . . . ;mÞ are them static nonspatial attributes, which
will not change with time. For a query point q starting from
ðxq; yqÞ moving with ðvqx; vqyÞ, q poses continuous skyline
query while moving, and the queries involve both distance
and all other static dimensions. Such queries are dynamic
due to the change in spatial variables. In their solution, they
compute the skyline for xq; yq at the start time 0. Subse-
quently, continuous query processing is conducted for each
user by updating the skyline instead of computing from
scratch. Lee et al. [13] studied a similar problem to [10]. Both
of them rely on the assumption that the velocities of themov-
ing points are known. Generally speaking, they compute the
skyline for query points moving on a line segment. Lin et al.
[16] studied a problem of computing the skyline for a range.
They employed the similar idea for authenticating skyline
queries in [15], [17]. Cheema et al. [6] proposed a safe zone
for a query point q. A safe zone is the area such that the
results of a query q remain unchanged as long as the query
lies inside the area. Both [16] and [6] studied the location-
based skyline problem with m static attributes and one
dynamic attribute, which is the distance to the query point.

The main difference between the above work and our
skyline diagram [22] is that they only consider one dynamic
attribute, while in our case all attributes can be dynamic.
The skyline polyomino can be considered as a generaliza-
tion of the safe zone in two or high-dimensional space. Fur-
thermore, it is non-trivial to extend these query techniques
from one dynamic attribute to two or high-dimensional
case, as fundamentally these algorithms convert the prob-
lem to nearest neighbor queries for the single dynamic attri-
bute and utilize Voronoi diagram. Compared to [22], in this
paper, we propose an approximate skyline diagram which
can significantly reduce the space cost while introducing a
small amount of approximation in the skyline query result.
Furthermore, we propose two heuristic algorithms, bottom-
up merging algorithm and top-down partitioning algo-
rithm, to efficiently compute the approximate skyline dia-
gram with different tradeoffs.

3 PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we introduce our skyline diagram definition
and related concepts as well as their properties which will
be used in our algorithm design. For reference, a summary
of notation is given in Table 1.

Definition 1 (Skyline). Given a dataset P of n points in
d-dimensional space. Let p and p0 be two different points in P ,
we say p dominates p0, denoted by p � p0, if for all i,
p½i� � p0½i�, and for at least one i; p½i� < p0½i�, where p½i� is the
ith dimension of p and 1 � i � d. The skyline points are those
points that are not dominated by any other point in P .

Definition 2 (Dynamic Skyline Query [8]). Given a dataset
P of n points and a query point q in d-dimensional space. Let p

TABLE 1
The Summary of Notations

Notation Definition

P dataset of n points
pi½j� the jth attribute of pi
q query point
n number of points in P
d number of dimensions in P
si domain size of ith dimension
Ci;j Cell with bottom left corner coordinate ði; jÞ
SkyðCi;jÞ the skyline of Cell Ci;j

SCi;j Subcell with bottom left corner coordinate ði; jÞ
SkyðSCi;jÞ the skyline of Subcell Ci;j

SkylineðP 0Þ the skyline of dataset P 0
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and p0 be two different points in P , we say p dominates p0 with
regard to the query point q, denoted by p � p0, if for all i,
jp½i� � q½i�j � jp0½i� � q½i�j, and for at least one i; jp½i��
q½i�j < jp½i� � q½i�j, where p½i� is the ith dimension of p and
1 � i � d. The skyline points are those points that are not
dominated by any other point in P .

The traditional skyline computation is a special case of
dynamic skyline query where the query point is the origin.
On the other hand, computing dynamic skyline given
a query point q is equivalent to computing the traditional
skyline after transforming all points into a new space where
q is the origin and the absolute distances to q are used as
mapping functions. Take Fig. 1 as an example, given a query
point q ¼ ð10; 80Þ, p6 dominates p1 because p6’s corres-
ponding point t6 in the mapped space dominates p1’s
corresponding point t1. Because no other points can domi-
nate t6 and t11, the result of dynamic skyline query given q
is fp6; p11g.

The dynamic skyline query considers the dominance
among all points. Given a query point, if we consider each
quadrant divided by the query point independently, i.e.,
only consider dominance among points within the same
quadrant, we can define global skyline query below.

Definition 3 (Global Skyline Query [8]). Given a dataset P
of n points and a query point q in d-dimensional space.
The query point q divides the d-dimensional space into 2d quad-
rants. Let p and p0 be two different points in the same quad-
rant of P , we say p dominates p0 with regard to the query point
q, denoted by p � p0, if for all i, jp½i� � q½i�j � jp0½i� � q½i�j, and
for at least one i; jp½i� � q½i�j < jp0½i� � q½i�j, where p½i� is the
ith dimension of p and 1 � i � d. The skyline points are those
points that are not dominated by any other point in P .

Given a query point, we refer to the global skyline
from a single quadrant as Quadrant Skyline Query. In other
words, the global skyline is the union of the quadrant
skyline from all quadrants. Back to Fig. 1, given the query
point q, the quadrant skyline is fp3; p8; p10g in the first
quadrant, fp6g in the second quadrant, ; in the third
quadrant, and fp11g in the fourth quadrant. The global
skyline is the entire set of fp3; p6; p8; p10; p11g. It is easy to
see that the dynamic skyline is a subset of the global sky-
line. This property will be used in our algorithm design
for dynamic skyline diagram.

Similar to the definition of Voronoi cell and kth-order
Voronoi diagram for kNN query, we define the skyline pol-
yomino and skyline diagram for skyline query as follows.

Definition 4 (Skyline Polyomino). A polyomino SPi is a
skyline polyomino (hereinafter to be referred as skymino), if
given any two query points qa and qb in SPi, qa’s skyline result
SkyðqaÞ equals to qb’s skyline result SkyðqbÞ, while for any
query point qc outside SPi, the skyline result SkyðqcÞ of qc is
not equal to SkyðqaÞ.

Definition 5 (Skyline Diagram). Given a dataset P of n
points (seeds) p1; . . . ; pn. We define the Skyline Diagram of P
as the subdivision of the plane into a set of polyominos with the
property that any query points in the same polyomino have the
same skyline query result.

Problem Statement. Given n points, we aim to compute the
skyline diagram for quadrant/global skyline queries and
dynamic skyline queries efficiently.

4 SKYLINE DIAGRAM OF QUADRANT AND GLOBAL

SKYLINE

In this section, we present detailed algorithms for comput-
ing skyline diagram of quadrant in two-dimensional space.
Note that global skyline can be simply computed by taking
a union of all quadrant skylines. We first show an Oðn3Þ
baseline algorithm and define an important notion of sky-
line cell, which will be used by all our proposed algorithms.
We then present two improved algorithms based on
directed skyline graph and relationship between neighbor-
ing cells. Both algorithms have Oðn3Þ time complexity but
they are much faster than the baseline in practice. Finally,
we quantify the exact relationship between the skyline
results of neighboring cells, and present an Oðn2Þ sweeping
algorithm which further improves the performance. For
two-dimensional space, we use x and y to denote the two
dimensions (instead of the jth attribute as listed in Table 1).

4.1 Baseline Algorithm

We first show a baseline algorithm for computing skyline
diagram and introduce an important notion, skyline cell.
The key for computing skyline diagram is to find regions
such that any query points in the same region have the
same skyline result. Intuitively, we can find small regions
that are guaranteed to have the same results and then merge
them to form bigger regions.

Skyline Cell. If we draw one horizontal and one vertical
line over each point, these OðnÞ grid lines divide the plane
into Oðn2Þ cells. For example, in Fig. 4, the horizontal and
vertical lines over each of the 11 points divide the plane
into 144 cells. It is clear that any query points inside each
cell are guaranteed to have the same quadrant/global sky-
line because there are no points in the cell that would
change the dominance relationship of the points with
respect to the query point. We name the cell as Skyline Cell.

Definition 6 (Skyline Cell). The horizontal and vertical lines
over each point divide the plane into skyline cells. Any query
points in the same skyline cell have the same skyline results for
quadrant/global skyline.

Finding Skyline for each Skyline Cell. Since we know that
query points in each skyline cell have the same skyline
results, we can employ any skyline algorithm to compute
the skyline for each cell. Given a cell Ci;j, we denote

Fig. 4. Quadrant skyline query.
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SkyðCi;jÞ as its skyline result. We can then merge the skyline
cells with the same results to form skyline polyominos.
Since the skyline computation given n points for each cell
takes OðnlognÞ time and there are Oðn2Þ skyline cells, the
total time complexity is Oðn3lognÞ. If the n points are sorted
on x-coordinate, we can compute the skyline for one cell in
OðnÞ time. Therefore, the total time can be reduced to Oðn3Þ.
This baseline algorithm is shown in Algorithm 1. After the
points are sorted (Line 1), the steps for computing skyline in
OðnÞ based on ordered points are shown in Lines 5-12,
where gi;j is the left lower intersection of skyline cell Ci;j.

Algorithm 1. The Baseline Algorithm for Skyline Dia-
gram of Quadrant Skyline Queries

input: a set of n points and skyline cells Ci;j.
output: skyline of each skyline cell SkyðCi;jÞ.

1 sort the points in ascending order on x-coordinate;
2 for i=0 to n do
3 for j=0 to n do
4 for k=1 to n do
5 if pk½x� > gi;j½x�&&pk½y� > gi;j½y� then
6 add pk to the candidate list;
7 choose the first element pfirst as the first skyline;
8 ptemp ¼ pfirst;
9 for l=2 to jcandidate listj do
10 if pl½y� < ptemp½y� then
11 add pl to skyline pool;
12 ptemp½y� ¼ pl½y�;
13 return skyline pool as SkyðCi;jÞ;

Merging Skyline Cells into Skyline Polyominos. Once we
have the skyline results for each cell, we can merge the cells
with same results to form skyline polyominos. For each sky-
line cell, we search its upper and right cells and combine
those cells if they share the same skyline. The entire merg-
ing requires Oðn2Þ time.

Example 1. In Fig. 4, the skyline cells C4;0, C4;1, and C3;1

share the same skyline result fp8; p10g, and hence are com-
bined to form a skyline polyomino.

Complexity. As we analyzed above, finding skyline phase
requires Oðn3Þ time, and merging phase requires Oðn2Þ
time. Therefore, the total time complexity for the baseline
algorithm is Oðn3Þ. We have Oðn2Þ skyline cells or skyminos
and each skymino requires OðnÞ to store. Thus, the space
complexity is Oðn3Þ. The above analysis assumes attribute
domain is unlimited. In practice, the data attributes often
have a domain with limited size (or can be discretized),
hence the actual complexity is also bounded by the domain

size (the number of possible values) of each dimension.
Given a domain size s, the number of skyline cells is
bounded by Oðminðs2; n2ÞÞ, hence both the time and space
complexity for the baseline algorithm is Oðminðs2; n2ÞnÞ.
We note that the remaining algorithms have the same
space complexity due to the output structure in this section.
For high dimensional space, the time complexity is
OðminðQd

i¼1 si; n
dÞnlog d�1nÞ and the space complexity is

OðminðQd
i¼1 si; n

dÞnÞ. For detailed analysis and the high
dimensional cases for the remaining algorithms, please see
the details in the Appendix, available online.

4.2 Directed Skyline Graph Algorithm

In the baseline algorithm, we need to compute skyline
for each skyline cell from scratch which is costly. In this
subsection, based on the observation of some interesting
relationships of the skyline results of neighboring cells, we
propose an incremental algorithm utilizing the directed sky-
line graph for computing skyline for neighboring cells. Note
that the merging step of the skyline cells remains the same
as the baseline.

Our algorithm is based on the key observation that when
moving from one cell to its neighboring upper or right cell,
the only point that will cause the skyline result to change is
the point on the crossed grid line. For example, in Fig. 4,
given cell C0;0, the skyline is fp1; p6; p11g. When moving to
its right cell C1;0 across the p1 grid line, the new result is the
skyline of the remaining points after removing p1, that is
fp6; p11g. Similarly, when moving from C0;0 to its upper cell
C0;1 across the p11 grid line, the new result is the skyline of
the points after removing p11, that is fp1; p6; p10g. Based on
this observation, we propose to use a data structure called
the directed skyline graph to facilitate the incremental com-
putation of the skyline from one cell to its neighboring cell.

We first briefly describe the directed skyline graph (DSG)
adapted from [18] and explain how it can be used to facili-
tate the incremental skyline computation and then present
our algorithm utilizing the graph for computing the skyline
for all skyline cells.

Given n points, we first compute its skyline layers by
employing the skyline layer algorithm from [18]. The skyline
layers of our running example are shown in Fig. 5. The first
skyline layer consists of all skyline points in the original
dataset. The second skyline layer consists of all skyline
points of the remaining points after removing the points
from the first skyline layer. And similarly for the remaining
skyline layers. There are several properties for skyline layers:
1) the points on the same layer cannot dominate each other,
2) the points on a lower layer may dominate the points on a
higher layer, and 3) the points on a higher layer cannot domi-
nate the points on a lower layer. Based on these skyline
layers, we obtain the directed skyline graph which captures
all the direct dominance relationships between the points as
shown in Fig. 6. For example, p6 directly dominates p3 and
p5. We note that the directed skyline graph algorithm from
[18] includes both direct and indirect dominance relation-
ships (e.g., p6 dominates p4 indirectly). We adapted it such
that we only include the direct links which are needed to
solve our problem.

We now show how we can incrementally compute the
skyline from one cell to its neighboring cell utilizing the

Fig. 5. Skyline layers.
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skyline graph. When moving from one cell to its right
neighboring cell across the grid line over p, there are two
changes in the skyline result caused by the point p: 1) p is
no longer a skyline point, 2) new skyline points may appear
since they are not dominated by p anymore with respect to
the query point in the new cell. So all we need to do is to
remove p as well as its dominance links from the skyline
graph, any of the children points of p without remaining
parents will be a new skyline (since it is no longer domi-
nated by any points).

Given any cell, we can also compute its upper neighboring
cell in a similar way. Hence our algorithm starts from the ori-
gin cellC0;0, and incrementally computes the first row of cells
from left to right. Then it incrementally computes all the rows
from bottom to up. The algorithm is shown in Algorithm 2.
The directed skyline graph is computed in Line 1 and the
skyline for C0;0 is computed in Line 2. The skyline for each
row is computed in Lines 5-8. Lines 9-11 copy and update the
DSG for next row.

Algorithm 2. The Directed Skyline Graph Algorithm for
Skyline Diagram of Quadrant Skyline Queries

input: a set of n points and skyline cells Ci;j.
output: skyline of each skyline cell SkyðCi;jÞ.

1 compute the directed skyline graph DSG;
2 SkyðC0;0Þ ¼ SkyðP Þ;
3 for i=0 to n-1 do
4 tempDSG=DSG;
5 for j=1 to n do
6 delete the point pj between Ci;j�1 and Ci;j from DSG;
7 delete the link between pj and its directed children;
8 SkyðCi;jÞ = SkyðCi;j�1Þ � pj + the children of pj without

any remaining parent;
9 DSG=tempDSG;
10 delete the point pj between Ci;0 and Ciþ1;0 from DSG;
11 delete the link between pj and its directed children;
12 SkyðCiþ1;0Þ = SkyðCi;0Þ � pj + the children of pj without

any
remaining parent;

Example 2. Given C0;0 in Fig. 4, its skyline is the set of
points on the first skyline layer, fp1; p6; p11g. When mov-
ing from C0;0 to its right neighboring cell C1;0 across the
p1 grid line, to compute the new skyline, all we need to
do is to remove p1 (p1 does not have any direct dominance
links), hence the skyline for C1;0 is simply fp6; p11g after
removing p1 from the skyline set. When we move further
to C1;0’s right neighboring cell C2;0 across the p6 grid line,
we just need to remove p6 and remove the dominance
links from p6 to p3 and p5. Since p3 is no longer dominated

by any points after p6 is removed, it becomes a new
skyline. Hence the skyline for C2;0 consists of the remain-
ing skyline p11 and the new skyline p3, i.e., fp3; p11g.
Complexity. As we iterate through all the cells in one row,

we are removing dominance links from the skyline graph.
Each link costs one update and the total number of links is
Oðn2Þ. Therefore, it requires Oðn2Þ time to compute the sky-
line for cells in one row. Since there are n rows, the time
complexity for the directed skyline graph algorithm is
Oðn3Þ. We note that in practice, the number of links is much
smaller than n2. Hence the algorithm is much faster than
the baseline algorithm in practice. Similar to the analysis in
baseline algorithm, given a limited domain size s, the total
number of links is Oððminfs2; ngÞ2Þ. Therefore, the time
complexity for the directed skyline graph algorithm is
Oððminfs2; ngÞ2nÞ. The space complexity stays the same as
the baseline algorithm which is Oðminðs2; n2ÞnÞ.

4.3 Scanning Algorithm

The previous algorithm still involves computation of skyline.
Ideally, we would like to avoid the computation as much as
possible. We observed earlier that the skyline results for
neighboring cells are different only due to the point on the
shared grid line. For example, in Fig. 7, SkyðC1;2Þ and
SkyðC2;2Þ are different due to p6, same for SkyðC1;3Þ and
SkyðC2;3Þ. Similarly, SkyðC1;2Þ and SkyðC1;3Þ are different
due to p9, same for SkyðC2;2Þ and SkyðC2;3Þ. In this sub-
section, we observe an interesting property of the exact
relationship between the skyline results of neighboring
cells, and present a new Oðn3Þ time algorithm utilizing this
property for computing skyline for all cells. Again, the
merging of cells into skyline polyominos stays the same as
the baseline.

Theorem 1. Given any skyline cell Ci;j (except the ones that have
a point as its upper right corner), and its right cell Ciþ1;j, upper
cell Ci;jþ1, and upper right cell Ciþ1;jþ1, their skyline results
have a relationship as follows.

SkyðCi;jÞ ¼ SkyðCiþ1;jÞ þ SkyðCi;jþ1Þ � SkyðCiþ1;jþ1Þ 1

Please see the proof of all theorems in the Appendix,
available online.

Example 3. Given cell C1;2 in Fig. 7, pR is p9 and pC is p6.
Consider the skyline result of its upper right cell C2;3, we
have SkyP ðAÞ ¼ fp8g, SkyP ðBÞ ¼ ; as p7 is dominated by
p8, SkyP ðCÞ ¼ fp3g as p2; p5 are dominated by p8, and

Fig. 6. Directed skyline graph.

Fig. 7. Scanning algorithm.

1. Multiset operation.
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SkyP ðDÞ ¼ ; as p4 is dominated by p8. We have skyline
result for the upper right cell SkyðC2;3Þ ¼ fp3; p8g, the
upper cell SkyðC1;3Þ ¼ fp6; p8g, and the right cell
SkyðC2;2Þ ¼ fp3; p8; p9g. It is easy to see that the skyline for
the given cell is SkyðC1;2Þ ¼ SkyðC2;2Þ þ SkyðC1;3Þ�
SkyðC2;3Þ ¼ fp6; p8; p9g.
We note that the above property holds for all skyline cells

except the ones that have a point as its upper right corner.
For these cells, their skyline is the upper right point because
this point dominates all the upper right region. For example,
in Fig. 7, SkyðC4;3Þ ¼ fp8g and SkyðC6;6Þ ¼ fp5g.

Algorithm 3. The Scanning Algorithm for Skyline Dia-
gram of Quadrant Skyline Queries

input: a set of n points and skyline cells Ci;j.
output: skyline of each skyline cell SkyðCi;jÞ.

1 for i=0 to n do
2 SkyðCi;nÞ ¼ ;;
3 SkyðCn;iÞ ¼ ;;
4 for i=n-1 to 0 do
5 for j=n-1 to 0 do
6 if there is a point p on the upper right corner of Ci;j then
7 SkyðCi;jÞ={p};
8 else
9 SkyðCi;jÞ ¼ SkyðCiþ1;jÞ þ SkyðCi;jþ1Þ � SkyðCiþ1;jþ1Þ;

Based on these properties, we present a scanning algo-
rithm as shown in Algorithm 3. The basic idea is to start
from the top and rightmost cell, and scan the cells from the
top down and right to left, then utilizing the property in
Theorem 1 to compute the skyline for each cell. We first ini-
tialize the skyline results for the skyline cells on the top row
and rightmost column to ; (Lines 1-3). Then for each cell
Ci;j, if there is a point p on its upper right corner, we set
SkyðCi;jÞ ¼ fpg (Line 7). Otherwise, we use SkyðCi;jÞ ¼
SkyðCiþ1;jÞ þ SkyðCi;jþ1Þ � SkyðCiþ1;jþ1Þ to compute the sky-
line of Ci;j (Line 9).

Complexity. There are Oðn2Þ cells, each cell requires OðnÞ
time formultiset computation. Therefore,Algorithm3 requires
Oðn3Þ time in total. We note that in practice, the time formulti-
set computation is much smaller than n. Thus the algorithm is
much faster than the baseline algorithm in practice. Given a
domain size s for each dimension, the number of cells is
bounded by Oðminðs2; n2ÞÞ, hence Algorithm 3 requires
Oðminðs2; n2ÞnÞ time in total. The space complexity stays the
same as the baseline algorithmwhich isOðminðs2; n2ÞnÞ.

4.4 Sweeping Algorithm

All previous algorithms involve computing skyline for each
skyline cell (divided by the grid lines) and then merging
them into skyline polyominos. Ideally, if we can find the
skyline polyominos directly rather than combining the sky-
line cells, we can save the cost of computing skyline for
each skyline cell. In this subsection, we show a sweeping
algorithm that achieves this goal.

We observed previously that when we move from one
cell to its right cell, the only change in the skyline result is
caused by the point on the crossed grid line. In fact, we can
further observe that if the point on the crossed grid line lies
below the cell, then the skyline result does not change at all.

This is because we are only considering the points in the
cell’s upper right quadrant. For example, C3;1 has skyline
result fp8; p10g. When we move from C3;1 to C4;1 crossing
point p11, the skyline remains the same because p11 is below
the cells and does not affect the result. Similarly, when we
move from one cell to its upper cell, if the point on the
crossed grid line is to the left of the cells, the skyline result
does not change either. In other words, each point only
affects the skyline result of its lower and left cells, not its
upper or right cells. Motivated by this observation, instead
of drawing grid lines over each point to divide the plane
into skyline cells, we can draw two half-open grid lines
starting from each point, one downward and another left-
ward. These Oð2nÞ grid line segments divide the plane into
a set of polyominos, each containing one or more cells. Since
we know that each point will not affect the skyline result of
its upper and right cells, we can show that any query points
in such formed polyominos have the same skyline results.
We have a theorem as follows.

Theorem 2. Given a set of points, if we draw two half-open grid
lines starting from each point, one downward and another left-
ward, each polyomino formed by these Oð2nÞ lines is a skyline
polyomino and all query points inside have the same first quad-
rant skyline query results.

Algorithm 4. The Sweeping Algorithm for Skyline Dia-
gram of Quadrant Skyline Queries

input: a set of n points.
output: skyline polyominos.

1 /*compute all the intersection points and link them by left
and right neighbors in Lines 4-10*/;

2 sort the points in descending order on y-coordinate, p1 (pn)
is the point with highest (lowest) y-coordinate;

3 p1:left ¼ ð0; p1½y�Þ;
4 for i=2 to n do
5 insert pi into sorted queue X by x-coordinate and its new

index is j;
6 pi:left ¼ ðpj�1½x�; pi½y�Þ;
7 ðpj�1½x�; pi½y�Þ:right ¼ pi;
8 for j=i to 1 of sorted queue X do
9 ðpj�1½x�; pi½y�Þ:left ¼ ðpj�2½x�; pi½y�Þ;
10 ðpj�2½x�; pi½y�Þ:right ¼ ðpj�1½x�; pi½y�Þ;
11 /*similarly, we can compute the lower/upper neighbor of

each intersection point*/;
12 for each intersection point g0 do
13 skyminog = {g0}; g= g0;
14 skyminog.append(g.left); g ¼ g:left;
15 while g½x�! ¼ g0½x� do
16 skyminog.append(g.lower); g ¼ g:lower; skyminog.

append(g.right); g ¼ g:right;
17 return skyminog;

While it is straightforward to visually see the skyline pol-
yominos from the figure (e.g., Fig. 8), we need to represent
the skyline polyominos computationally by its vertices,
which are the intersection points of the half-open grid lines
including the points themselves. We now show how to com-
pute the coordinates of these vertices and then how to find
the vertices for each polyomino.

We observe that for each point p, its horizontal grid line
only intersects with the vertical grid lines from its upper
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points, i.e., with larger y coordinates. Hence, given a point
pðx; yÞ, we can compute all the intersection points on its hor-
izontal grid line as gðxj; yÞ, where xj is the x coordinate from
those points with larger y coordinates than p. For each inter-
section point, we record its left and right neighbor, so that
we can retrieve the vertices for each polyomino. Similarly,
for each point, we compute the intersection points on its
vertical grid line, and record the lower and upper neighbor
for each intersection point. The detailed algorithm is shown
in Algorithm 4.

Example 4. For p4 in Fig. 8, its horizontal line intersects
with the vertical lines of p2; p3; p1, hence the intersection
points on its horizontal line are ðp2½x�; p4½y�Þ; ðp3½x�; p4½y�Þ;
ðp1½x�; p4½y�Þ, and ð0; p4½y�Þ. For each point, it has a left/
right and upper/lower neighbor, e.g., ðp2½x�; p4½y�Þ:
right ¼ p4.

Once all the intersection points are computed and linked
by their left/right and lower/upper neighbors, we can
retrieve the sequence of vertices for each polyomino. We
can see that each intersection point has a uniquely corre-
sponding polyomino with the point as its upper right cor-
ner. Therefore, for each intersection point g, we find the
sequence of vertices forming its corresponding polyomino.
The polyominos are either rectangles or half-rectangles with
lower left side shaped like steps. Hence we first retrieve g’s
left neighbor. We then repeatedly find the next lower neigh-
bor and right neighbor until the right neighbor reaches the
same y coordinate as the original intersection point g.

Example 5. For the intersection point g1ðp8½x�; p10½y�Þ in
Fig. 8, we first find its left vertex g2ðp3½x�; p10½y�Þ. We then
find the lower vertex g3ðp3½x�; p11½y�Þ, and the right vertex
g4ðp11½x�; p11½y�Þ in the first iteration. Because g4 is not
meeting the grid line at g1 yet, it continues to find the next
lower vertex g5ðp11½x�; 0Þ and the right vertex g6ðp8½x�; 0Þ.
Now the algorithm stops as g6 reaches the y grid line of
g1. The sequence of vertices for the skymino correspond-
ing to g1 is g1; g2; g3; g4; g5; g6.

Complexity. The computation of intersection points
requires Oðn2Þ time. Because each grid line segment
between two neighboring intersection points will be used at
most twice for constructing skyminos, the skymino con-
structing step requires Oðn2Þ time. Therefore, Algorithm 4
requires Oðn2Þ time. Given a domain size s for each dimen-
sion, the number of intersection points is bounded by
Oðminðs2; n2ÞÞ, hence Algorithm 4 requires Oðminðs2; n2ÞÞ
time. The space complexity stays the same as the baseline
algorithm which is Oðminðs2; n2ÞnÞ.

4.5 Discussion

Although the sweeping algorithm is better than both the
directed skyline graph algorithm and the scanning algo-
rithm in terms of time complexity, each algorithm has its
advantage. The scanning algorithm has the best perfor-
mance on the datasets with limited domain; the directed
skyline graph algorithms has the best performance on anti-
correlated datasets.

Maintaining skyline diagram against updates is an inter-
esting topic for future study. In this paper, we present a sim-
ple yet reasonable idea and analyze the corresponding time
complexity. A systematic study including an extensive
empirical evaluation and more scalable solutions against
faster updates is reserved for future study. We show how to
add a point and how to delete a point separately.

adding a point: Given a new point pi, we draw one left-
ward half-open grid line starting from pi. This grid line
intersects with the downward half-open grid lines of the
upper points of pi. For each new intersection point g, we
compute its skyline polyomino using the algorithm shown
in Section 4.4. At the same time, each new intersection point
g will affect the skyline polyomino of its immediate upper
intersection point g0. Therefore, we need to recompute the
skyline polyomino of g0. For the newly added point pi,
we need to recompute the skyline polyomino of its immedi-
ate upper-right intersection point. Similarly, we can update
the skyline polyominos affected by the downward half-
open grid lines of pi.

deleting a point: Deleting a point is very similar to adding
a point. Given a point pi to be deleted, pi has one leftward
half-open grid line intersects with the downward half-open
grid lines of the upper points of pi. For each intersection
point g, if we delete point pi, it will affect the skyline polyo-
mino of the immediate upper intersection point g0 of g, we
only need to recompute the skyline polyomino of g0. Fur-
thermore, we need to recompute the skyline polyomino of
pi’ immediate upper-right intersection point. Similarly, we
can update the skyline polyominos affected by the down-
ward half-open grid lines of pi.

time complexity: For adding a point pi, the leftward half-
open grid line of pi intersects with the downward half-open
grid lines of the upper points of pi. It requires OðnÞ time to
compute the intersection points. For each new intersection
point, it requires Oð1Þ time to compute the skyline polyo-
mino. Therefore, it requires OðnÞ time to compute the new
skyline polyominos generated by the new point pi.
Similarly, we need OðnÞ time to update the skyline polyo-
minos of the immediate upper intersection points of the
new intersection points. Therefore, it requires OðnÞ time
to add a new point. Similarly, it also requires OðnÞ time to
delete a point.

5 SKYLINE DIAGRAM OF DYNAMIC SKYLINE

In this section, we study algorithms for skyline diagram of
dynamic skyline in two dimensions. They can be extended
to high dimensions similar to skyline diagram of quadrant/
global skyline. We first present a baseline algorithm and
define an important notion of skyline subcell. Then based
on the observation that dynamic skyline query result is a
subset of global skyline, we present an improved subset

Fig. 8. Sweeping algorithm.
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algorithm utilizing the skyline diagram of global skyline.
Finally, based on the relationship of the skyline results of
neighboring subcells, we present a scanning algorithm with
improved complexity.

5.1 Baseline Algorithm

Similar to the skyline diagram of quadrant/global skyline,
we can first find small regions that are guaranteed to have
the same dynamic skyline, and then merge them to form
skyline polyominos.

Skyline Subcell. In skyline diagram of quadrant/global
skyline, each point contributes a horizontal and vertical
grid line to divide the plane into skyline cells which are
guaranteed to have the same result for quadrant skyline
queries. For dynamic skyline, all points will be mapped to
the first quadrant with respect to the query point and may
dominate the points which are otherwise global skyline
points. Hence the points in the skyline cell are not guaran-
teed to have the same dynamic skyline. Therefore, to
account for mapped points, in addition to the grid lines
over each point, we draw a vertical and horizontal bisector
line between each pair of points. In total, we have O n

2

� �
hori-

zontal lines and O n
2

� �
vertical lines which leads to Oð n

2

� �2Þ
regions. Fig. 9 shows an example with 4 points. The 4

2

� �

bisector lines between each pair of points and the 4 grid
lines over each point divide the plane into 121 regions. We
can see that these regions are guaranteed to have the same
dynamic skyline, since there are no points or mapped points
in each of these regions that would change the dominance
relationship of the points. To distinguish with skyline cell
for quadrant/global skyline, we name these regions skyline
subcells for dynamic skyline.

Definition 7 (Skyline Subcell). The vertical and horizontal
bisectors of each pair of points divide the plane into skyline sub-
cells. Any query points in the same skyline subcell have the
same dynamic skyline.

Finding Skyline for each Skyline Subcell. Once we have the
skyline subcells, we can compute the skyline for each sub-
cell. The baseline algorithm is straightforward and similar
to the skyline computation for skyline cells as shown in
Algorithm 5. For each subcell SCi;j, it first maps all the
points to the first quadrant with respect to the subcell
(Lines 4-5). It then computes the skyline of the mapped
points.

Complexity. Since skyline can be computed in OðnÞ time if
the points are sorted on one dimension, and there are Oðn4Þ
subcells, the entire algorithm (Algorithm 5) can be finished
in Oðn5Þ. Similarly, the space complexity is Oðn5Þ. We note
that the remaining algorithms in this section have the same

space complexity due to the same output structure. In prac-
tice, given a limited domain size s for each dimension, the
number of subcells is bounded by Oðminðs2; n4ÞÞ because
most of the bisector lines are coincident. Hence the time and
space complexity becomes Oðminðs2; n4ÞnÞ.

Algorithm 5. The Baseline Algorithm for Skyline Dia-
gram of Dynamic Skyline

input: skyline subcells SCi;j.
output: skyline of each skyline subcell SkyðSCi;jÞ.

1 for i=0 to mx do
2 for j=0 to my do
3 for k=1 to n do
4 pk½x�0 ¼ jpk½x� � SCi;j½x�j;
5 pk½y�0 ¼ jpk½y� � SCi;j½y�j;
6 employ skyline algorithm on p0k for k ¼ 1; . . . ; n to compute

the skyline as the output of SCi;j;

5.2 Subset Algorithm

As we discussed earlier, the mapped points may dominate
additional points that would have been global skyline
points. As a result, the dynamic skyline of each subcell SCi;j

is a subset of the global skyline of the skyline cell it belongs
to. For example, in Fig. 9, SkyðSC3;1Þ is a subset of SkyðC1;1Þ.
Therefore, we can first use the algorithms in the previous
section to compute the global skyline of the skyline cells,
and then compute the dynamic skyline of each subcell from
this set rather than the entire n points. The detailed algo-
rithm is shown in Algorithm 6 which is very similar to the
baseline algorithm. The only difference is we just need to
consider the output of global skyline results of each skyline
cell rather than the entire n points.

Algorithm 6. The Subset Algorithm for Skyline Diagram
of Dynamic Skyline

input: global skyline result of each skyline cell SkyðCi;jÞ.
output: dynamic skyline result of each skyline subcell
SkyðSCi;jÞ.

1 for k=0 to mx do
2 for l=0 to my do
3 find Ci;j such that SCk;l 2 Ci;j;
4 SkyðSCk;lÞ = dynamic skyline of the points in SkyðCi;jÞ

Complexity. Although the worst case time complexity is
the same as the baseline algorithm Oðn5Þ, on average, the
number of skyline for n points is only OðlognÞ. Therefore,
the amortized time complexity of the subset algorithm
is reduced to Oðn4lognÞ. We will show that the subset
algorithm is indeed significantly faster than the baseline
algorithm in practice in Section 7. Again, given a limited
domain size s for each dimension, the number of subcells
is bounded and hence the time and space complexity is
Oðminðs2; n4ÞnÞ.

5.3 Scanning Algorithm

The baseline and subset algorithms compute the skyline for
each subcell from scratch. To further improve the efficiency,
in this subsection, we propose an incremental scanning
algorithm based on the relationship of the dynamic skyline

Fig. 9. Skyline subcells for dynamic skyline (solid grid lines for cells and
dotted lines for subcells).
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results of neighboring subcells. This is due to the observa-
tion that as we move from one subcell to its neighboring
subcell on the right, the only difference of the skyline result
is caused by the two points that contributed to the bisector
line between the two subcells. We just need to consider
these two points in addition to the skyline result of the pre-
vious subcell. For example in Fig. 9, SkyðSC4;2Þ ¼ fp3g, for
SC4;1, we only need to check fp3g [ fp3; p4g ¼ fp3; p4g.
Because p3; p4 cannot dominate each other, therefore,
SkyðSC4;1Þ ¼ fp3; p4g. So similar to the scanning algorithm
for quadrant skyline queries, we first compute SkyðSC0;0Þ
for the lower left subcell. We then scan the subcells from left
to right on the first row and compute the skyline incremen-
tally. We then compute each of the remaining rows from
bottom up. The detailed algorithm is shown in Algorithm 7.

Algorithm 7. The Scanning Algorithm for Skyline
Diagram of Dynamic Skyline

input: a set of n points and skyline subcells SCi;j.
output: skyline of each skyline subcell SkyðSCi;jÞ.

1 employ skyline algorithm to compute the skyline of Subcell
SC0;0;

2 for i=1 to mx do
3 SkyðSCi;0Þ = SkyðSCi�1;0Þ

S
the points contributing to the

bisectors between SCi�1;0 and SCi;0;
4 for i=0 to mx do
5 for j=1 to my do
6 SkyðSCi;jÞ = skyline from SkyðSCi;j�1Þ

S
the points

contributing to the bisectors between SCi;j�1 and SCi;j;

The key step in the above algorithm is to compute the
updated skyline given the skyline result of the previous cell
and the new points contributing to the bisectors (Line 3 and
Line 8). When adding a new point, there are two cases:
1) the new point becomes a skyline point which may domi-
nate some existing skyline points, or 2) the new point is
dominated by existing skyline points. To determine if the
new point is dominated by existing skyline points, we can
do a binary search to find the skyline point pi such that
pi½x� � p½x� and p½x� � piþ1½x�. If pi½y� � p½y�, the new point is
a skyline point, otherwise, the new point is dominated by
pi. This procedure can be finished in OðlognÞ time. If the
new point is a skyline point, we need to remove those points
dominated by the new point. If we sort the skyline points in
ascending order on x-coordinate and descending order on
y-coordinate, we can delete those points in OðlognÞ time.

Complexity. Since the computation of updated skyline for
each subcell only costs OðlognÞ time, and there are Oðn4Þ
subcells, the overall worst case time complexity for the

scanning algorithm is Oðn4lognÞ. Again, given a limited
domain size s for each dimension, the number of subcells is
bounded and hence the time complexity is Oðminðs2;
n4ÞlognÞ. The space complexity is the same as the baseline
algorithm which is Oðminðs2; n4ÞnÞ.

6 APPROXIMATE SKYLINE DIAGRAM

The challenge of skyline diagram is the high space cost.
In this section, we propose an approximate skyline diagram
to significantly reduce the space cost. The key idea of the
approximate skyline diagram is to allow nearby skyline cells
that have different but similar skyline results to be merged
into one skyline polyomino in order to reduce the number
of skyline polyominos and hence reduce the space cost.
However, this may sacrifice the precision of the skyline query
result, i.e., each skyline polyomino now has the union of the
skyline points of each skyline cell within the skyline polyo-
mino, which is a superset of the actual skyline result given
any query point within the skyline polyomino. A query user
then needs to process this superset to find the actual result.
The more skyline cells we merge, the higher precision we
trade off, since the size of the skyline union can be much
larger than the actual number of skyline points of each single
skyline cell. The extreme case for the approximate skyline dia-
gram is that we combine all skyline cells into one skyline poly-
omino. In this case, the skyline diagram is not useful because
it defeats the purpose of skyline query by returning the union
of the skyline points of all skyline cells, whose size can be as
large as n in theworst case.

We propose to use nh Horizontal Partitioning Lines
(HPLs) and nv Vertical Partitioning Lines (VPLs) to partition
the whole skyline diagram into ðnh � 1Þðnv � 1Þ skyline pol-
yominos such that each skyline polyomino contains at most
d skyline points. Parameter d guarantees that a user only
needs to consider at most d skyline points/choices so that
the approximation is controlled. Our optimization goal is to
find the smallest nh þ nv which “approximately” minimizes
the space cost, i.e., Oððnh � 1Þðnv � 1ÞdÞ.
Definition 8 (Approximate Skyline Diagram Problem).

Given a skyline diagram with n� n skyline cells (without merg-
ing skyline cells into skyline polyominos), we partition the sky-
line diagram into ðnh � 1Þðnv � 1Þ skyline polyominos with the
minimum number of HPLs nh plus number of VPLs nv such
that each skyline polyomino contains at most d skyline points.

Example 6. In Fig. 10b, we partition the skyline diagram
into 3� 3 ¼ 9 skyline polyominos with the minimum
4 HPLs and 4 VPLs (red lines) such that each skyline
polyomino contains at most d ¼ 1 skyline points.

Given a dataset of n points, the expected number of sky-
line points is OðlnnÞ [2]. Because the maximum number of
skyline points in each skyline polyomino is d, a straightfor-
ward bound for the average precision of our approximate
algorithms is Oðlnn

d
Þ.

In the following, we first prove the NP-hardness of
the approximate skyline diagram problem. Therefore, it is
unlikely that there are efficient algorithms for solving this
problem exactly. We then propose two heuristic algorithms
to efficiently compute the approximate skyline diagram.

Fig. 10. An instance of mapping between rectangular partitioning
problem and approximate skyline diagram problem.
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6.1 NP-Hardness of the Approximate Skyline
Diagram

In this subsection, we prove that the approximate skyline
diagram problem is NP-hard by showing that the rectangu-
lar partitioning problem is polynomial time reducible to the
approximate skyline diagram problem.

Definition 9 (Rectangular Partitioning Problem). [9],
[24] Given a set of non-overlapping rectangles R1; R2; . . . ; Rn,
we partition the plane into tiles with the minimum number of
rows plus columns such that each resulting tile intersects (adja-
cent boundary touch is not considered as an intersection) at
most d rectangles.

Similarly, we have the decision version of the rectangular
partitioning problem as follows,

Definition 10 (Decision Version of the Rectangular Par-
titioning Problem). Given a set of non-overlapping rectan-
gles R1; R2; . . . ; Rn and the values n0

h and n0
v, is there a

partitioning ðn0
h; n

0
vÞ of the plane such that each tile intersects

at most d rectangles, where n0
h is the number of HPLs and n0

v is
the number of VPLs.

It was shown in [9] that the decision version of the rect-
angular partitioning problem is NP-hard even when d ¼ 1.
Similarly, we have the decision version of the approximate
skyline diagram problem as follows.

Definition 11 (Decision Version of the Approximate
Skyline Diagram Problem). Given a skyline diagram with
n� n skyline cells, each cell Ci;j of the skyline diagram having
a set of points SkyðCi;jÞ, and the values nh and nv, is there a
partitioning ðnh; nvÞ of the skyline diagram such that each
resulting skyline polyomino contains at most d unique symbols.

Theorem 3. The approximate skyline diagram problem is NP-
hard even when d ¼ 1.

6.2 Algorithms for Computing the Approximate
Skyline Diagram

In this subsection, we show two heuristic algorithms, Bot-
tom-Up Merging algorithm and Top-Down Partitioning
algorithm, to efficiently compute the approximate skyline
diagram in two-dimensional space. We note that both algo-
rithms are applicable for skyline diagram of global and
dynamic skyline.

6.2.1 Bottom-Up Merging Algorithm

In this subsection, we show a bottom-up merging algorithm
to compute the approximate skyline diagram. The general
idea is to merge as many skyline cells that satisfy the upper
limit of d skyline points in each skyline polyomino as possi-
ble. For each row, we scan each cell from left to right, and
we find the maximum number of skyline cells that the

number of points in the union of the skyline points is � d.
We find the smallest number nsmallest among all the n rows
and set the ðssmallest þ 1Þth grid line as the second VPL,
where we consider the first vertical grid line as the first
VPL. In this case, we can guarantee that we do not need to
partition the space between the first VPL and the second
VPL anymore. Similarly, we can find all VPLs. For each
row, we merge the skyline cells between each two adjacent
VPLs and get a new skyline diagram with n rows and
nv � 1 columns, where nv is the number of VPLs. Using the
similar method, we can find all the HPLs.

Algorithm 8.Merging-based Bottom-Up Algorithm

input: A skyline diagram with n� n skyline cells and
parameter d.
output: An approximate skyline diagram.
1 currentVL=1;
2 if currentVL � n then
3 for i=1 to n do
4 tempUnion[i]=;;
5 tempVL[i]=currentVL;
6 for j=currentVL to n do
7 tempUnion½i� ¼ S ftempUnion½i�; SkyðCcurrentVL;jÞg;
8 if jtempUnion½i�j > d then
9 break;
10 tempVL[i]=j-1;
11 find the smallest value SV from all tempVL[i], i=1,2,. . .,

n;
12 currentVL=SV ;
13 add the SV th vertical line to partitioning line pool;
14 denote the number of vertical partitioning lines as nv;
15 we have vertical partitioning lines VPL1; VPL2; . . . ; VPLnv ,

where VPL1 ¼ 1 and VPLnv ¼ nþ 1;
16 currentHL=1;
17 for i=1 to n do
18 for j=1 to nv-1 do
19 SkyðCi;jÞ ¼ ;;
20 for k=VPLj to VPLjþ1-1 do
21 SkyðCi;jÞ ¼

S fSkyðCi;jÞ; SkyðCi;kÞg;
22 we have a new skyline diagram with n rows and nv-1

columns;
23 similar to Lines 1-15, we have horizontal partitioning lines

HPL1; HPL2; . . . ; HPLnh , whereHPL1 ¼ 1 andHPLnh ¼
nþ 1;

24 for i=1 to nv-1 do
25 for j=1 to nh-1 do
26 merge all the skyline cells lying between grid vertical

line VPLi; VPLiþ1 and grid horizontal lineHPLj;
HPLjþ1;

The detailed algorithm is shown in Algorithm 8, we find
all VPLs in Lines 1-15. For each row, we merge the skyline
cells between the adjacent VPLs in Lines 17-21. We find all
HPLs in Line 23. Finally, we merge the skyline cells between
the HPLs and VPLs in Lines 24-26. The approximate skyline
diagram has nv � 1 rows and nh � 1 columns, and each sky-
line polyomino contains at most d points.

6.2.2 Top-Down Partitioning Algorithm

When d is large, it is time-consuming to merge the skyline
cells one by one. In this subsection, we show a top-down par-
titioning algorithm to compute the approximate skyline

TABLE 2
The Statistics of Both Real Datasets

Dataset Number of Points Number of Dimensions

NBA 2384 5
Wine Quality 4898 12
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diagram, which is desirable when d is large. The general idea
is to partition the plane into the minimum number of skyline
polyominos that satisfy the upper limit of d skyline points in
each skyline polyomino. We assume nv ¼ nh ¼ p. We first
guess that we only need p0 ¼ 2VPLs andHPLs, i.e., we parti-
tion the skyline diagram into one skyline polyomino. And
then we check if each skyline polyomino contains more than
d points. If it does, we double p0 and check again until each
polyomino contains� d points. That is, we find a p0 such that
p0 satisfies the requirement but p0=2 not. We then use binary
search to find the exact p between p0=2 and p0 such that p satis-
fies the requirement but p� 1 not. The remaining problem is
how to “equally” partition the skyline diagram. We take the
number of the skyline points in each skyline cell as its
weight, and then we have the weights for each row and each
column. We partition the skyline diagram based on the
weights of the rows and the columns.

Algorithm 9. Top-Down Partitioning Algorithm

input: A skyline diagram with n� n skyline cells and
parameter d.
output: An approximate skyline diagram.

1 for i=1 to n do
2 for j=1 to n do
3 W ðCi;jÞ ¼ jSkyðCi;jÞj;
4 for i=1 to n do
5 W ðRiÞ ¼ 0;
6 for j=1 to n do
7 W ðRiÞ ¼ WðRiÞ þWðCi;jÞ;
8 similar to Lines 4-7, we have WðCiÞ for all columns, where

i=1,2,. . .,n;
9 p’=2;
10 partition the skyline diagram into ðp0 � 1Þ2 skyline polyomi-

nos equally based on the weights of the rows and the
columns;

11 while one of the skyline polyomino contains more than d

points do
12 p’=2p’;
13 partition the skyline diagram into ðp0 � 1Þ2 skyline polyo-

minos equally based on the weights of the rows and the
columns;

14 use binary search to find the exact p between p0=2 and p0

such that p satisfies the requirement but p� 1 not.
15 partition the skyline diagram into ðp� 1Þ2 skyline polyomi-

nos equally based on the weights of the rows and the
columns;

16 use the similar method of Lines 24-26 in Algorithms 8 to
compute the final approximate skyline diagram;

The detailed algorithm is shown in Algorithm 9. In Lines
1-3, we compute the weight for each skyline cell. We com-
pute the weights for the rows and the columns in Lines 4-8.
We guess that we only need two VPLs and two HPLs in

Line 9 and check if the approximate skyline diagram satis-
fies the requirement in Line 10. If it does not, we double the
number of partitioning lines p0 until the approximate sky-
line diagram satisfies the requirement in Line 12. However,
the exact number of partitioning lines p should be a value
between p0=2 and p0. Therefore, we use binary search to find
the exact p in Line 14. We partition the skyline diagram into
ðp� 1Þ2 skyline polyominos equally based on the weights
and get the final approximate skyline diagram in Line 16.

7 EXPERIMENTS

In this section, we present experimental studies evaluating
our proposed algorithms.

7.1 Experiment Setup

We first evaluate the algorithms for computing skyline dia-
gram of quadrant/global skyline, and then the algorithms
for dynamic skyline. Finally, we evaluate the algorithms for
computing the approximate skyline diagram. We imple-
mented all algorithms in Python and to avoid the effect of
I/O, final results are not stored in the exact skyline diagram
experiments. We ran experiments on 1) a desktop with Intel
Core i7 running Ubuntu 14.04 with 64GB RAM for skyline
diagram, and 2) a computation server with quad Intel Xeon
E5-4627 v3 with 1TB RAM running Ubuntu 16.04 for the
approximate skyline diagram. We compare four algorithms
(QBase: Baseline algorithm, QGraph: Skyline graph algo-
rithm, QScan: Scanning algorithm, and QSweep: Sweeping
algorithm) for quadrant skyline diagram and three algo-
rithms (DBase: Baseline algorithm, DSubset: Subset algo-
rithm, and DScan: Scanning algorithm) for dynamic skyline
diagram. We compare two heuristic algorithms (BUM: Bot-
tom-Up Merging algorithm and TDP: Top-Down Partition-
ing algorithm) for the approximate skyline diagram.

Weused a realNBAdataset2 and a realwine quality dataset
fromUCI [7] in our experiments.We show the statistics of both
datasets in Table 2. To study the scalability of ourmethods, we
generated independent (INDE), correlated (CORR), and anti-
correlated (ANTI) datasets following the seminal work [3].

7.2 Skyline Diagram of Quadrant Skyline

Figs. 11a, 11b, and 11c present the time cost of QBase,
QGraph, QScan, and QSweep with varying number of points
n for the three synthetic datasets. For this set of experiments,
we used unlimited domains and enforced no two data points
lie on the same x-coordinate or y-coordinate, which can be
considered as a stress test for the algorithms.We evaluate the
impact of domain size in Section 7.6. The results of

Fig. 11. The impact of n on skyline diagram of quadrant skyline queries (unlimited domain).

2. Extracted from http://stats.nba.com/leaders/alltime/?ls=iref:
nba:gnav on 04/15/2015.
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QBase algorithm on CORR, INDE, and ANTI dataset are
almost the same which means the data distribution has no
impact on baseline algorithm. We did not report the result of
the baseline algorithm in some figures due to the high cost
when n is large. All the proposed algorithms scale well with
the increasing number of points.

We first examine each algorithm and compare its perfor-
mance on different datasets. For the QGraph algorithm, the
time on INDE dataset is higher than CORR and ANTI data-
sets. This is because the number of links between parent
and children nodes in the directed skyline graph is larger
for INDE dataset. For the QScan algorithm, the time on
ANTI dataset is much higher than INDE dataset which is
much higher than CORR dataset. This is because the num-
ber of skyline in each cell in ANTI dataset is much more
than INDE and CORR datasets. Therefore, it requires more
time to do the multiset operation on ANTI dataset. For the
QSweep algorithm, it is much faster than QGraph and
QScan on CORR dataset because there are much fewer
intersections thus fewer polyominos on CORR dataset.
However, the performance of QSweep is not so good on
ANTI dataset due to the huge number of intersections on
ANTI dataset.

Comparing different algorithms, QGraph, QScan, and
QSweep significantly outperform QBase, which validates
the effectiveness of our algorithms. QSweep outperforms
QScan on all datasets thanks to its combined steps of finding
skyline polyominos directly (but we will see an opposite
result on real NBA dataset later). For CORR and INDE data-
sets, QSweep is the most efficient out of all algorithms,
while for ANTI dataset, QGraph has the best performance
due to the reason we explained earlier.

Fig. 11d reports the time cost of QBase, QGraph, QScan,
and QSweep with varying number of points n for the real
NBA dataset. The difference between the previous synthetic
datasets and this NBA dataset is that the latter has a limited
domain which leads to fewer number of cells even given the
same number of points. Herein, the time cost of 2100 points
on NBA is significantly smaller than that of 2000 points
on synthetic datasets. Comparing different algorithms,
the performances of QScan and QSweep are similar and
QScan is slightly better than QSweep which is opposite to

the performances on synthetic datasets. The reason is that
on NBA dataset, the number of cells is much smaller but the
number of intersections is similar. However, both QScan
and QSweep outperform QGraph. The wine dataset has
similar performances to the NBA dataset as shown in
Fig. 11e.

7.3 Extension to High-Dimensional Space

Fig. 12 reports the time cost of QBase, QGraph, and QScan
with varying number of dimensions d for the real NBA data-
set. In two-dimensional space, QScan is much better than
QGraph, but in high-dimensional space, QScan and QGraph
are very similar. The reason is that QScan algorithm needs
too many multiset operations in high-dimensional space.
Both QGraph and QScan significantly outperform QBase,
which verifies the effectiveness and scalability of our pro-
posed algorithms in high-dimensional space.

7.4 Query Time Using Skyline Diagram

State-of-the-art skyline algorithms without any precom-
puted structure requires OðnlognÞ time (Oðnlog d�1nÞ for
d-dimensional space [1]). Once we have the skyline diagram
precomputed, the online time for answering skyline queries
can be implemented with only Oð1Þ, which is desirable in
many real time scenarios. To demonstrate the benefit, we
compare the query time using skyline diagram with a sky-
line query algorithm without precomputed structure.
Fig. 13 shows the comparison on INDE dataset in two-
dimensional space. We chose the query point randomly and
ran the experiment 1000 times, the time was accumulated.
We can see that the queries based on skyline diagram are
105 times faster and not affected by the increasing number
of points, while skyline queries without any structure
requires more than one second when n is large.

7.5 Skyline Diagram of Dynamic Skyline

Figs. 14a, 14b, 14c, 14d, and 14e present the time cost of
DBase, DSubset, and DScan with varying number of points
n for the three synthetic datasets (s ¼ 102), the NBA dataset,
and the wine dataset. We used a fixed domain size (s ¼ 102)
for the synthetic datasets in this experiment and show the

Fig. 12. Impact of dimensions d. Fig. 13. Query time using skyline diagram.

Fig. 14. The impact of n on skyline diagram of dynamic skyline (s ¼ 102).
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impact of domain size in Section 7.6. For the dataset with
large n, DSubset significantly outperforms DBase and
DScan, and the time cost for DSubset is almost the same.
The reason is that a larger number of points almost does not
affect the number of skyline cells in skyline diagram of
global skyline, which is mainly restricted by the domain.
DSubset is based on the skyline cells in skyline diagram of
global skyline, and the number of skyline subcells is mainly
restricted by the domain as well.

7.6 Impact of Domain Size

In this experiment, we evaluate the impact of domain size
on both quadrant and dynamic skyline diagram algorithms.
Fig. 15 reports the time cost of different algorithms with
varying domain size s on INDE dataset (n ¼ 200; d ¼ 2). We
observe that the time increases with increasing s as
expected. On the other hand, when s is much larger than n,
increasing s does not have an impact unless n increases. In
addition, when s is much larger than n, we see that DScan
outperforms DSubset because the number of global skyline
is very large in dataset with large domains.

7.7 Approximate Skyline Diagram

In this subsection, we evaluate two heuristic algorithms for
the approximate skyline diagram in terms of time cost,
space cost, and precision. We define the precision as the
average ratio of the number of skyline points in each
skyline cell to the number of skyline points in each
skyline polyomino that contains this skyline cell, that is
P

i¼1;2;...; n;j¼1;2;...;n
jSkyðCi;jÞj
jSkyðSPkÞj, where skyline polyomino SPk

contains skyline cell Ci;j. We note that the precision of an
exact skyline diagram evaluated so far is 100 percent since
all skyline cells within a skyline polyomino are guaranteed
to have the same skyline result. While satisfying the space
limitation, we can set d as small as possible to make the pre-
cision as high as possible.

Figs. 16a, 16b, and 16c present the impact of the num-
ber of points n on the time cost, the space cost, and
the precision. Both the time cost and the space cost
increase linearly with the increasing number of points n.

We show the space cost of the accurate skyline diagram
in blue line. The precision increases with the increasing
number of points n because the number of skyline points
in each skyline cell is increasing and the number of sky-
line points in each skyline polyomino does not change
substantially as we fix d ¼ 90.

Figs. 17a, 17b, and 17c present the impact of parameter d
on the time cost, the space cost, and the precision. In
Fig. 17a, BUM is better than TDP when d is small, but is
worse when d is large. The time cost of BUM increases with
increasing d because we need to check more skyline cells to
find HPLs and VPLs. On the contrary, the time cost of TDP
decreases with increasing d because the needed number of
guessing the exact number of partitioning lines decreases.
Therefore, we can employ BUM when d is small and then
switch to TDP when d is large. Furthermore, if we can learn
the appropriate number of partitioning lines rather than
guessing from d ¼ 2, TDP will have much better perfor-
mance. In Fig. 17b, the space cost of both BUM and TDP
decreases with increasing d because we need less skyline
polyominos when d is large. When d is small, the space cost
of TDP is larger than that of BUM, but is smaller when d is
large, which corresponds to the trend of the time cost in
Fig. 17a. In Fig. 17c, the precision decreases with the increas-
ing d because the number of skyline points in each skyline
cell does not change substantially but the number of skyline
points in each skyline polyomino is increasing.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel concept called skyline dia-
gram. Given a set of points, it partitions the plane into a set of
skyline polyominos where query points in each polyomino
have the same skyline query results. We studied skyline
diagram for three kinds of skyline queries and presented sev-
eral efficient algorithms to compute the skyline diagram.
We propose two heuristic algorithms, bottom-up merging
algorithm and top-downpartitioning algorithm, to efficiently
compute the approximate skyline diagram with different
tradeoffs. Experimental results on both real and synthetic

Fig. 15. The impact of s.

Fig. 16. The impact of n (d=90).

Fig. 17. The impact of d (n=8k).

Fig. 18. Performance improvements of parallelizations.

284 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 1, JANUARY 2021

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on October 08,2022 at 03:19:43 UTC from IEEE Xplore.  Restrictions apply. 



datasets show that our algorithms are efficient and scalable.
As for future work, we will study skyline diagram with
dynamic dataset and develop external algorithms that would
not be constrained bymainmemory.
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