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ABSTRACT Latency
Today’s cloud database systems are not designed for seamless cost- (rTls) Slow
performance trade-offs for changing SLOs. Database engineers have 15 o > DB
a limited number of trade-offs due to the limited storage types of-
fered by cloud vendors, and switching to a different storage type 47(,}
requires a time-consuming data migration to a new database. We ),
propose MUTANT, a new storage layer for log-structured merge Af[f?}q é Fast
tree (LSM-tree) data stores that dynamically balances database 0.1 Opyf"h N DB
cost and performance by organizing SSTables (files that store a
subset of records) into different storage types based on SSTable ac- » Cost
30M 300M &/

cess frequencies. We implemented MUTANT by extending RocksDB
and found in our evaluation that MUTANT delivers seamless cost-
performance trade-offs with the YCSB workload and a real-world
workload trace. Moreover, through additional optimizations, Mu-
TANT lowers the user-perceived latency significantly compared
with the unmodified database.
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Figure 1: MUTANT provides seamless cost-performance trade-
off's between “fast database” and “slow database’, and better cost-
performance trade-offs with an extra optimization.

1 INTRODUCTION

The growing volume of data processed by today’s global web ser-
vices and applications, normally hosted on cloud platforms, has
made cost effectiveness a primary design goal for the underlying
databases. For example, if the 100,000-node Cassandra clusters Ap-
ple uses to fuel their services were instead hosted on AWS (Amazon
Web Services), then the annual operational costs would exceed
$370M1. Companies, however, also wish to minimize their database
latencies since high user-perceived response times of websites lose
users [28] and decrease revenue [26]. Since magnetic storage is a
common latency bottleneck, cloud vendors offer premium storage
media like enterprise-grade SSDs [8, 30] and NVMe SSDs [15]. Yet
even with optimizations on such drives, like limiting power usage
[11, 17] or expanding the encoding density [31, 38], the price of
lower-latency storage media can eat up the lion’s share of the total
cost of operating a database in the cloud (Figure 2).

Trading off database cost and latency involves tedious and error-
prone effort for operators. Consider, for instance, the challenges
faced by an engineer intending to transition a large database system
operating in the cloud to meet a budget cut. When the database
system accommodates only one form of storage medium at a time,
they must identify a cheaper media — normally a limited set of
options - while minimizing the ensuing latencies. They then live-
migrate data to the new database and ultimately all customer-facing

IConservatively calculated using the price of AWS EC2 c3.2xlarge instance, of which
storage size adequately hosts the clusters’ data.
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Figure 2: Fast storage is costly. Cost to host an IaaS database in-
stance for 1 year using various storage devices. Storage cost can be
more than 2X the cost of CPU and memory. Based on the pricing of
EC21i2.2xlarge instance (/O-optimized with 1.6 TiB storage device)

[8].

applications, a process that can take months as in the case of Net-
flix [9]. Every subsequent change in the budget, including possible
side-effects from the subsequent change in latencies, undergoes a
similar laborious process. In the rare cases where the database does
support multiple storage media, such as the round-robin strategy
in Cassandra [3] or per-level storage mapping in RocksDB [6], the
engineer is stuck with either a static configuration and a suboptimal
cost-performance trade-off, or they must undertake cumbersome
manual partitioning of data and yet still be limited in their cost
options to accommodate budget restrictions.

We argue that cloud databases should support seamless cost-
performance trade-offs that are aware of budgets, avoiding the need
to manually migrate data to a new database configuration when
workloads or cost objectives change. Here, we present MUTANT:
a layer for log-structured merge tree (LSM-tree) data stores [21,
33] that automatically maintains a cost budget while minimizing
latency by dynamically keeping frequently-accessed records on
fast storage and less-frequently-accessed data on cheaper storage.
Rather than the trade-off between cost-performance points being
zero-sum, we find that by further optimizing the placement of
metadata, MUTANT enables the data store to simultaneously achieve
both low cost and low latency (Figure 1).

The key insight behind MUTANT is to exploit three properties
of today’s data stores. First, the access patterns in modern work-
loads exhibit strong temporal locality, and the popularity of objects
fades over time [14, 24]. Second, LSM-tree designs imply that data
that arrives in succession is grouped into the same SSTable, being
split off when full. Because of the access patterns, the frequency
of which an SSTable is accessed decreases with the SSTable’s age.
Third, each SSTable of which the database is comprised is a portable
unit, allowing them to be readily migrated between various cloud
storage media. MUTANT combines these properties and continu-
ously migrates older SSTables and, thus, colder data to slower and
cheaper storage devices.

Dynamically navigating the cost-performance trade-off comes
with challenges. To minimize data access latencies while meet-
ing the storage cost SLO (service level objective), the MUTANT
design includes lightweight tracking of access patterns and a
computationally-efficient algorithm to organize SSTables by their
access frequencies. Migrations of SSTables are not free, so MUTANT
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also contains a mechanism to minimize rate of SSTable migrations
when SSTable access frequencies are in flux.

We implement MUTANT by modifying RocksDB, a popular, high-
performance LSM tree-based key-value store [7]. We evaluated
our implementation on a trace from the backend database of
a real-world application (the QuizUp trivia app) and the YCSB
benchmark [18]. We found that MUTANT provides seamless cost-
performance trade-off, allowing fine-grained decision making on
database cost through an SLO. We also found that with our further
optimizations, MUTANT reduced the data access latencies by up to
36.8% at the same cost compared to an unmodified database.

Our paper makes the following contributions:

o We demonstrate that the locality of record references in real-
world workloads corresponds with the locality of SSTable refer-
ences: there is a high disparity in SSTable access frequencies.

o We design an LSM tree database storage layer that provides seam-
less cost-performance trade-offs by organizing SSTables with
an algorithm that has minimal computation and IO overheads
using SSTable temperature, an SSTable access popularity metric
robust from noise.

We further improve the cost-performance trade-offs with op-
timizations such as SSTable component organization, a tight
integration of SSTable compactions and migrations, and SSTable
migration resistance.

e We implement MUTANT by extending RocksDB, evaluate with a
synthetic microbenchmarking tool and a real-world workload
trace, and demonstrate that (a) MUTANT provides seamless cost-
performance trade-offs and (b) MUTANT-OPT, an optimized ver-
sion of MUTANT, reduces latency significantly over RocksDB.

2 BACKGROUND AND MOTIVATION

The SSTables and SSTable components of LSM-tree databases have
significant data access disparity. Here, we will argue that this im-
balance is created from locality in workloads, and gives us an op-
portunity to separate out hotter and colder data at an SSTable level
to store on different storage media.

2.1 Preliminaries: LSM-Tree Databases

Our target non-relational databases (BigTable, HBase, Cassandra,
LevelDB and RocksDB), all popular for modern web services for
their reputed scalability and high write throughput, all share a
common data structure for storage: the log-structured merge (LSM)
tree [1,7, 16, 21, 25]. We start with a brief overview of how LSM tree-
based storage is organized, in particular the core operations (and
namesake) of log-structured writes and merge-style reads, deferring
further details to the literature [33].

Writes: When a record is written to an LSM-tree database, it is
first written to the commit log for durability, and then written to
the MemTable, an in-memory balanced tree. When the MemTable
becomes full from the record insertions, the records are flushed
to a new SSTable. SSTable contains a list of records ordered by
their keys: the term SSTable originates from sorted-string table.
The batch writing of records is the key design for achieving high
write throughputs by transforming random disk IOs to sequential
IOs. A record modification is made by appending a new version to
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Figure 3: Record age and its access
frequency from the QuizUp data access
trace. Access frequencies are aggregated
over all records and normalized.

QuizUp trace replay.

the database, and a record deletion is made by appending a special
deletion marker, tombstone.

Reads: When a record is read, the database consults the MemTable
and the SSTables that can possibly contain the record, merges all
matched records, and then returns the merged result to the client.

Leveled compaction: The merge-style record read implies that
read performance will depend on the number of SSTables that need
to be opened, the number of which is called a read amplification fac-
tor. To reduce the read amplification, the database reorganizes SSTa-
bles in the background through a process called SSTable compaction.
In this work, we focus on the leveled compaction strategy [33] that
was made popular by LevelDB, and has been adopted by Cassandra
and RocksDB [7, 19].

The basic version of leveled compaction decreases read ampli-
fication by imposing two rules to organize SSTables into a hierar-
chy. First, SSTables at the same level are responsible for disjoint
keyspace ranges, which guarantees a read operation to read at most-
one SSTable per level?. Second, the number of SSTables at each
level increases exponentially from the previous level, normally by
a factor of 10. Thus, a read operation in a database consisting of N
SSTables only needs to look up O(log N) SSTables [6, 19, 21, 27].

2.2 Locality in Web Workloads

Modern web workloads have repeatedly been shown to have high
temporal data access locality: access frequency drops off quickly
with age [14, 24, 37]. We observe that a similar temporal locality
exists with database records from the analysis of a real-world data-
base access trace: we gathered a 16 day trace of the key-value stores
underlying Plain Vanilla’s QuizUp trivia app while serving tens
of millions of players [5]. Figure 3 shows a sharp drop of record
accesses as records become old.

2.3 Locality in SSTable Accesses

The locality in record accesses, combined with the batch writing of
records to SSTables, leads to the locality in SSTable accesses. We
confirm the SSTable access frequency disparity by analyzing the

2Level-0 SSTables are exceptions to the rule, however, databases limit those SSTables
to a small number.
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Figure 4: SSTable access frequency
distribution on day 15 of the 16-day
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Figure 5: SSTable access frequencies over time. Each
rectangle represents an SSTable with a color representing
its access frequency. SSTable heights at the same time are
drawn proportionally to their sizes.

SSTable accesses using the QuizUp workload. First, at a given time,
only a small number of SSTables are frequently accessed and the
others are minimally accessed: the difference between the most and
the least frequently accessed ones is as big as 4 orders of magnitudes
(see Figure 4). Second, the access disparity persists throughout the
time, as shown by the time vs. SSTable accesses in Figure 5. As
more records are inserted over time, the number of infrequently
accessed SSTables (“cold” SSTables) increases, while the number
of frequently accessed SSTables (“hot” SSTables) stays about the
same.

2.4 Locality in SSTable Component Accesses

Not only do SSTables have different access frequencies, but also
SSTable components have different access frequencies. In this sub-
section, we analyze how frequently each of the SSTable components
are accessed. An SSTable consists of metadata and database records,
and metadata includes a Bloom filter and a record index, both of
which reduce the read I0s: Bloom filter [13] is for quickly skipping
an SSTable when the record doesn’t exist in it, and record index is
for efficiently locating record offsets.

Component Access Frequencies: To read a record, the database
makes a sequence of SSTable component accesses: First, the data-
base checks the keyspace range of the SSTables at each level to find
the SSTables that may contain the record. There is at most 1 such
SSTable per level thanks to the leveled organization of SSTables
(§2.1); in other words, there are at most N SSTables, where N is the
number of levels. Second, for each SSTable that passes the keyspace
range test, the database checks the Bloom filter to see if the record
is in the SSTable or not. Out of the N SSTables, there is only 1
SSTable that contains the record and N — 1 SSTables that do not.
In the former SSTable, the Bloom filter always answers maybe®, in
the latter SSTables, the Bloom filter answers maybe with a false
positive ratio fp. Thus, on average, 1 + (N — 1) - fp read requests
go to the next step. The number becomes approximately 1 when
fp is very small such as 0.01, which is the case with most of the
databases. Third, using the record index, the database locates and
reads the record.

3Bloom filter tests if an item is in a set or not, and answers a definitely no or a maybe
with a small false positive ratio.
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. Access frequency . Access Cost
I;Slll;;::gelz)s Type (relative to Size frequency Storage type  ($/GB/month) fops
Bloom filter) Bytes % / size 0.528 Varies by
Local SSD the instance type
Filter.db Bloom filter 1 149,848  0.11 869 Remote SSD 0.100 Max 10,000
Summary.db Index (top) 1 15,056  0.01 60/N Remote Magnetic 0.045 Max 500
Index.db Index (bottom) v 2,152,386  1.62 Remote Magnetic
Data.db Records 130,219,353  98.24 1/N Cold 0.025 Max 250

Table 1: Access frequency and size of SSTable components. The sizes are taken
from a representative SSTable with 127,167 1-KB records. N is the number of levels.

Component Sizes: Bloom filter size depends on the false positive
ratio, regardless of the number of elements it filters: the smaller the
false positive ratio fp is, the bigger the filter becomes. Record index
size depends on the number of records in an SSTable and the density
of the index entries. Some databases like Cassandra have a top-level,
sparse index and a bottom-level, full index, while others such as
RocksDB have a single sparse index. Database records account for
the majority of the SSTable space.

We present an access frequency and size breakdown of an SSTable
by their components in Table 1. In the order of Bloom filter, record in-
dex, and records, the access frequency decreases and the size increases:
the access frequency to size ratio varies by more than 3 orders of
magnitudes with a typical number of levels, 3 or more.

2.5 Cloud Storage Opportunities

With such high access frequency disparities among SSTables and
among SSTable components, it would be a waste of resources if
we were to keep all data files in fast, expensive devices; likewise,
it would be a lost opportunity in performance if we were to keep
all files in slow, inexpensive devices. Fortunately, cloud vendors
provide various storage options with different cost-performance
trade-offs: for example, AWS offers various block storage devices
as in Table 2. The pricing is based on block storage in the AWS
us-east-1 region in Feb. 2018 [8, 36] (§5.1). We assume that local
SSD volumes are elastic, and inferred its unit price (See §5.1). In
addition to that, most of the storages are elastic: you use as much
storage as needed and pay for just the amount you used, and there
is no practical limit on its size. For a simple storage cost model, we
assume the storage cost is linear to its space. Premium storages
with complex cost models, such as dedicated network bandwidth
between a VM and storage or provisioned I/O models, are not
considered in this work.

3 SYSTEM DESIGN

Motivated by the strong access locality of SSTables and SSTable
components, we design MUTANT, a storage layer for LSM-tree non-
relational database systems that organizes SSTables and SSTable
components into different storage types by their access frequencies,
thus taking advantage of the low latency of the fast storage devices
and the low cost of slower storage devices.

3.1 SSTable Organization

From the highly skewed SSTable access frequencies that we’ve ob-
served in §2.3, it becomes straightforward to store SSTables into

Table 2: Cloud vendors provide storage options
with various cost and performance.

different storage types. The strategy for organizing SSTables onto
fast and slow storage devices depends on operator intentions, de-
fined as an SLO. A prototypical cost-based SLO could be: “we will
pay no more than $0.03/GB/month for the database storage, while
keeping the storage latency to a minimum.” We focus on the cost-
based SLO in this work and leave the latency-based SLO as a future
work.

3.1.1 Cost SLO-Based Organization. The above SLO can be
broken down into two parts: the optimization goal (a minimum
latency) and the constraint ($3/GB/month). Putting hard bounds
on cloud storage latencies is challenging for two reasons. First,
the exact latency characteristics are unknown - cloud vendors
tend not to make latency guarantees on their platforms due to
the inherent performance variability associated with multi-tenant
environments. Second, SSTables are concurrent data structures with
possible contention that can add non-trivial delays. We relax the
latency optimization objective into an achievable goal: maximize
the number of accesses to the fast device. In this paper, we focus on
dual storage device configurations — a database with both a fast
storage device and a slow one — and leave the multi-level storage
configurations as a future work. For completeness, we convert the
size constraint similarly. The high-level optimization problem is
now as follows:

Find a subset of SSTables to be stored in the fast storage (opti-
mization goal) such that the sum of fast storage SSTable accesses is
maximized, (constraint) while bounding the volume of SSTables in
fast storage.

First, we translate the cost budget constraint to a storage size
constraint, which consists of the two sub-constraints: (a) the total
SSTable size is partitioned into fast and slow storage, and (b) the
sum of fast and slow storage device costs should not exceed the
total storage cost budget.

Pfo + PsSs < Cmax (1)
Sp+Ss=S

where Cpax is the storage cost budget, or max cost, S is the sum of
all SSTable sizes, Sf and S; are the sum of all SSTable sizes in the
fast storage and slow storage, respectively, Py and P; are the unit
prices for the two storages media types. Solving Eq 1 for S¢ gives
the fast storage size constraint as in Eq 2.

Cmax _PSS
< - -

S 2
L 2

= Of max
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We formulate the general optimization goal as:
maximize Z Ajxj
ie€SSTables

subject to Z Sixi < Sf max and x; € {0, 1}
i€SSTables

®)

where A; is the number of accesses to the SSTable i, S; is the size
of the SSTable i, and x; represents whether the SSTable i is stored
in the fast storage or not.

The resulting optimization problem, Eq 3, is equivalent to a
0/1 knapsack problem. In knapsack problems, you are given a set
of items that each has a value and a weight, and you want to
maximize the value of the items you can put in your backpack
without exceeding a fixed a weight capacity. In our problem setting,
the value and weight of an item correspond to the size and access
frequency of an SSTable; the backpack’s weight capacity matches
the maximum fast storage device size, Sf may.

3.1.2 Greedy SSTable Organization. The 0/1 knapsack prob-
lem is a well-known NP-hard problem and often solved with a
dynamic programming technique to give a fully polynomial time
approximation scheme (FPTAS) for the problem. However, this
approach for organizing SSTables has two complications.

First, the computational complexity of the dynamic programming-
based algorithm is impractical: it takes both O(nW) time and O(nW)
space, where n is the number of SSTables and W is the number of
different sub-capacities to consider. To illustrate the scale, a 1 TiB
disk using 64 MiB SSTables will contain 10,000s of SSTables and
have 1012 sub-capacities to consider since SSTable sizes can vary
at the level of bytes. Moreover, this O(nW) time complexity would
be incurred every epoch during which SSTables are reorganized.

Second, optimally organizing SSTables at each organization
epoch can cause frequent back-and-forth SSTable migrations. Sup-
pose you have a cost SLO of $3/record and the database uses
two storage devices, a fast and a slow storage that cost $5/record

and $1/record, respectively. Initially, the average cost/record is

2.71 = %ﬁgﬂ), with the maximum amount of SSTables in

the fast storage while satisfying the cost SLO (Figure 6a at time
t1). When a new SSTable D is added, it most likely contains the
most popular items and is placed on the leftmost side (Figure 6a
at time ¢2). We assume that the existing SSTables cool down (as
seen in §3.1.3), and their relative temperature ordering remains
the same. This results in $3.40/record, temporarily violating the
cost SLO; however, at the next SSTable organization epoch, the
SSTables are organized with an optimal knapsack solution, bring-
ing the cost down to $3.00/record (Figure 6a at time ¢2’). Similarly,
when another SSTable E is added, the SLO is temporarily violated,
but observed soon after (Figure 6a at time ¢3 and ¢3”). During the
organizations, SSTable B migrates back-and-forth between storage
types, a maneuver that is harmful to read latencies: the latencies
can temporarily spike by more than an order of magnitude.

To overcome these challenges, we use a simple greedy 2-
approximation algorithm. Here, items are ordered by decreasing
ratio of value to weight, and then put in the backpack one at a time
until no more items fit. In our problem setting, an item’s value to
weight ratio corresponds to an SSTable’s access frequency divided
by its size, which is captured by SSTable temperature (defined in
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§3.1.3). The computational complexity of the greedy algorithms is
O(nlog n) with O(n) space instead of O(nW) for both with dynamic
programming. The log-factor in the time stems from the need to
keep SSTable references sorted in-place by temperature. However,
the instantaneous worst-case access latency of the SSTables chosen
to put into fast versus cold storage can be twice that of the dynamic
programming algorithm [23], although we rarely see worst-case
behavior exhibited in practice. The algorithmic trade-off thus lies
between reducing computational complexity versus minimizing
SSTable accesses latency.

3.1.3 SSTable Temperature. So far, we have discussed optimal
choices moment-to-moment, but access latencies are dynamical
quantities that depend on the workload. MUTANT monitors SSTable
accesses with an atomic counter for each SSTable. However, naively
using the counters for prioritizing popular tables has two prob-
lems:

e Variable SSTable sizes: The size of SSTables can differ from
the configured maximum size (64 MiB in RocksDB and 160 MiB
in Cassandra). Smaller SSTables are created at the compaction
boundaries where the SSTables are almost always not full. Bigger
SSTables are created at L0, where SSTables are compacted to
each other with a compaction strategy different from leveled
compaction such as size-tiered compaction.

Fluctuations of the observed access frequency: The coun-
ters can easily be swayed by temporary access spikes and dips:
for example, an SSTable can be frequently accessed during a
burst and then cease to receive any accesses, a problem arising
when a client has a networking issue, or a higher-layer cache
effectively gets flushed due to code changes, faults or mainte-
nance. Such temporary fluctuations could cause SSTables to be
frequency reorganized.

To resolve these issues, we smooth the access frequencies through
an exponential average. Specifically, the SSTable temperature is
defined as the access frequencies in the past epoch divided by the
SSTable size with an exponential decay applied *: the sum of the
number of accesses per unit size in the current time window and
the cooled-down temperature of the previous time window. Naive
application of exponential averages would start temperatures at 0,
which interferes with the observation that SSTables start out hot.
Instead, we set the initial temperature in a manner consistent with
the initial SSTable access frequency as follows:

A
-y 220, i1
Tt=14 S (4)
©1 ifr=1
s’ B
where Ty is the temperatures at time ¢, A(;_y ;] is the number of
accesses to the SSTable during the time interval (¢t — 1,¢], S is the
SSTable size, and « is a cooling coefficient in the range of (0, 1].

3.2 SSTable Component Organization

We have thus far discussed how MUTANT organizes SSTables them-
selves by their access frequencies. We discovered that MUTANT
can further benefit by considering the components of SSTables in

“It was inspired by Newton’s law of cooling [12].
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(b) Greedy organization of SSTables

Figure 6: Greedy SSTable organization reduces SSTable migrations.

the same light. We observed that the SSTable metadata portion,
specifically the Bloom filter and record index, have multiple magni-
tudes higher access-to-size ratios than the SSTable records portion
(see §2.4). Thus, MuTANT will strive to keep the metadata on fast
storage devices, going so far as to pinning metadata in memory.
The trade-off considered here weighs the reduced access latency
for metadata because they are always served from memory to the
reduced file system cache hit ratio for SSTable records due to the
reduced memory available for the file system cache.

The organization of SSTable components depends on the phys-
ical layout of an SSTable. On one hand, in databases that store
SSTable components in separate files (e.g., Cassandra), MUTANT
stores the metadata files in a configured storage device such as a fast,
expensive one. On the other hand, in databases that store SSTable
components all in a single file (e.g., RocksDB), MUTANT chooses
not to separate out the metadata and records. The latter optimiza-
tion would involve both implementing a transactional guarantee
between the metadata and records, and then rewriting the storage
engine and tools. Instead, MUTANT keeps the SSTable metadata in
memory once it is read. We note that some LSM-tree databases
already cache metadata, but only partially: RocksDB provides an
option to keep only the L0 SSTable metadata in memory.

4 IMPLEMENTATION

We implemented MUuTANT by modifying RocksDB, a high-
performance key-value store that was forked from LevelDB [7].
The core of MUTANT was implemented in C++ with 658 lines of
code, and 110 lines of code were used to integrate MUTANT with
the database.

4.1 Mutant API

MUTANT communicates with the database via minimal API consist-
ing of three parts:

Initialization: A database client initializes MUTANT with a storage
configuration: for example, a local SSD with $0.528/GB/month and
an EBS magnetic disk with $0.045/GB/month (Listing 1). The storage
devices are specified from fast to slow with the (path, unit cost)
pairs. A client sets or updates a target cost with SetCost ().

SSTable Temperature Monitoring: The database then registers
SSTables as they are created with Register(), unregisters them as

Options opt;

opt.storages.Add(
"/mnt/local-ssdl/mu—-rocks—-stg", 0.528,
"/mnt/ebs—-stl/mu—-rocks—stg", 0.045);

DB::0pen(opt);

DB::SetCost (0.2);

Listing 1: Database initialization with storage options

// Initialization

void Open(Options);

void SetCost(target_cost);
// SSTable temperature monitor
void Register(sstable);
void Unregister(sstable);
void Accessed(sstable);

// SSTable organization
void SchedMigr();

sstable PickSstToMigr();
sstable GetTargetDev();

Listing 2: MutanT API

they are deleted with Unregister(), and calls Accessed() so that
MUTANT can monitor the SSTable accesses.

SSTable Organization: SSTable Organizer triggers an SSTable
migration when it detects an SLO violation or finds a better or-
ganization by scheduling a migration with SchedMigr(). SSTable
Migrator then queries for an SSTable to migrate and to which
storage device to migrate the SSTable with PickSstToMigr() and
GetTargetDev(). GetTargetDev() is also called by SSTable com-
pactor for the compaction-migration integration we discuss in
§4.3.1.

The API and the interactions among MUTANT, the database, and
the client are summarized in Listing 2 and Figure 7.

4.2 SSTable Organizer

SSTable Organizer (a) updates the SSTable temperatures by fetch-
and-reset-ting the SSTable read counters and (b) organizes SSTables
with the temperatures and the target cost by solving the SSTable
placement knapsack problem. SSTable Organizer runs the organiza-
tion task every organization epoch such as every second. When an



MuTANT: Balancing Storage Cost and Latency in LSM-Tree Data Stores

Client ' Base Database MUTANT
Configure storages | i
Open database — Open () Init()
Set/update — > SetCost ()
target cost ! SSTable | )
created/deleted |~ Un/register()

SSTable read %Accessed( )

; Comp/migration | |
; scheduler ! OSSTaple
i SchedMigr ()4 i rganizer

SSTable —> PickSstToMigr ()
! migrator !

§ SSTable /i/ GetTargetDev ()

i compactor 3

Figure 7: Interactions among the client, the database, and Mu-
TANT. MUTANT API is depicted in red. Parameters and return values
are omitted for brevity.

SSTable migration is needed, SSTable Organizer asks the database
for scheduling a migration. Its interaction with the database and
the client is summarized in Figure 8. The two key data structures
used are:

SSTable Access Counter: Each SSTable contains an atomic
SSTable access counter that keeps track of the number of accesses.

SSTable-Temperature Map: Each SSTable is associated with a
temperature object that consists of the current temperature and
the last update time. The SSTable-Temperature map is concurrently
accessed by various database threads as well as SSTable Organizer
itself. To provide maximum concurrency, MUTANT protects the map
with a two-level locking: (a) a bottom-level lock for frequent reading
and updating SSTable temperature values and (b) a top-level lock
for far less-frequent adding and removing the SSTable references
to and from the map.

SSTable Organizer is concurrently accessed by a number of database
threads including:

SSTable Flush Job Thread: registers a newly-flushed SSTable
with MUTANT so that its temperature is being monitored.

SSTable Compaction Job Thread: queries MUTANT for the tar-
get storage device of the compaction output SSTables. Similar to
what the SSTable flush job does, the newly-created SSTables are
registered with MUTANT.

SSTable Loader Thread: registers an SSTable with MuTANT, when
it opens an existing SSTable.

SSTable Reader Thread: increments an SSTable access counter.

4.3 Optimizations

4.3.1 Compaction-Migration Integration. SSTable compaction
and SSTable migration are orthogonal events: the former is trig-
gered by the leveled SSTable organization and the latter is triggered
by the SSTable temperature change. However, SSTable compactions
cause SSTable temperature changes: when SSTables are compacted
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Figure 8: SSTable Organizer and its interactions with the
client and the database.

together, their records are redistributed among output SSTables
by their hashed key order, resulting in similar access frequencies
among output SSTables. Consequently, executing SSTable com-
pactions and migrations separately would have caused an ineffi-
ciency, the double SSTable write problem. Imagine an SSTable in the
fast storage is compacted with two SSTables in the slow storage,
creating a new SSTable T, in the fast storage and two new SSTa-
bles T}, and T¢ in the slow storage. Because their temperatures are
averaged due to the record redistribution, T, s temperature will be
low enough to trigger a migration, moving T, to the slow storage.

Thus, MUTANT piggybacks SSTable migrations with SSTable com-
pactions, which we call compaction-migration, effectively reducing
the number of SSTable writes, which is beneficial for keeping the
database latency low. Note that either an SSTable compaction or
an SSTable migration can take place independently: SSTables can
be compacted without being moved to a different storage device
(pure compaction), and an SSTable can be migrated by itself when
SSTable Organizer detects an SSTable temperature change across
the organization boundary (single SSTable migration). We analyze
how much SSTable migrations can be piggybacked in §5.4.3.

SSTable flushes, although similar to SSTable compactions, are
not combined with SSTable migrations. Since the newly flushed
SSTables are the most frequently accessed (recall §2.3), MUTANT al-
ways writes the newly flushed SSTables to the fast device, obviating
the need to combine SSTable flushes and SSTable migrations.

4.3.2 SSTable Migration Resistance. The greedy SSTable or-
ganization (§3.1.2) reduces the amount of SSTable churns, the back-
and-forth SSTable migrations near the organization temperature
boundary. However, depending on the workload, SSTable churns
can still exist: SSTable temperatures are constantly changing, and
even a slight change of an SSTable temperature can change the
temperature ordering. To further reduce the SSTable churns, Mu-
TANT defines SSTable migration resistance, a value that represents
the number of SSTables that don’t get migrated when their tem-
peratures change. The resistance is tunable by clients and provides
a trade-off between the amount of SSTables migrated and how
adaptive MUTANT is to the changing SSTable temperatures, which
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Figure 9: Performance of the storage devices, local SSD and
EBS magnetic volumes. File system cache was suppressed with di-
rect IO.

affects how well MUTANT meets the target storage cost. We analyze
the trade-off in §5.4.2.

5 EVALUATION

This section evaluates MUTANT by answering the following ques-

tions:

o How well does MUTANT meet a target cost and adapt to a change
in cost? (§5.2.1)

e What are the cost-performance trade-offs of MutanT like?
(§5.2.2)

e How much computation overhead does it take to monitor SSTable
temperature and calculate SSTable placement? (§5.3)

e How much does MUTANT benefit from the optimizations includ-
ing SSTable component organization? (§5.4)

5.1 Experiment Setup

We used AWS infrastructure for the evaluations. For the virtual
machine instances, we used EC2 r3.2xlarge instances that come
with a local SSD [2]. For fast and slow storage devices, we used
a locally-attached SSD volume and a remotely-attached magnetic
volume, called EBS st1 type. We measured their small, random read
and large, sequential write performances, which are the common
IO patterns for LSM tree databases. Compared to the EBS magnetic
volume, local SSD’s read latency was lower by more than an order of
magnitude, and its sequential write throughput was higher by 42%
(Figure 9). Their prices were $0.528 and $0.045 per GB per month,
respectively. Since AWS did not provide a pricing for the local SSD,
we inferred the price from the cost difference of the two instance
types, i2.2xlarge and r3.exlarge, which had the same configuration
aside from the storage size [35].

For the evaluation workload, we used (a) YCSB, a workload
generator for microbenchmarking databases [18] and (b) a real-
world workload trace from QuizUp. The QuizUp workload consists
of 686 M reads and 24 M writes of 2 M user profile records for 16
days. Its read:write ratio of 28.58:1 is similar to Facebook’s 30:1 [10].

5.2 Cost-Performance Trade-Offs

5.2.1 Cost Adaptability. To evaluate the automatic cost-
performance configuration, we vary the target cost while running
MUTANT and analyze its storage cost and database query latency.
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Figure 10: MUTANT makes cost-performance trade-offs seam-
less. Target cost changes over time (a), changes in underlying storage
cost (b), MUTANT organizes SSTables to meet the target cost (c) and
the database latencies (d).

We used the YCSB “read latest” workload, which models data access
patterns of social networks, while varying the target cost: we set
the initial target cost to $0.4/GB/month, lowered it to $0.2/GB/-
month, and raised it to $0.3/GB/month, as shown in Figure 10(a).
We configured MUTANT to update the SSTable temperatures every
second with the cooling coefficient & = 0.999.

MuTanT adapted quickly to the target cost changes with a small
cost error margin, as shown in Figure 10(b). When the target cost
came down from $0.4 to $0.2, about 4.5GB of SSTables were migrated
from the fast storage to the slow storage at a speed of 55.7 MB/sec;
when the target cost went up from $0.2 to $0.3, about 2.5GB of
SSTables were migrated to the other direction at a speed of 34.1
MB/sec. The cost error margin depends on the SSTable migration
resistance, a trade-off which we look at in §5.4.2: a 5% SSTable
migration resistance was used in the evaluation. Figure 10(c) shows
how MUTANT organized the SSTables among the fast and slow
storages to meet the target costs.

Database latency changed as MUTANT reorganized SSTables to
meet the target costs (Figure 10(d)). Read latency changes were
the expected trade-off as SSTables are reorganized to meet the
target costs; write latency was rather stable throughput the SSTable
reorganizations. The stable write latency is from (a) records are
first written in MemTable not causing any disk IOs, then batch-
written to the disk, minimizing the IO overhead and (b) commit log
is always written to the fast storage device regardless of the target
cost. At the start of the experiment, the latency was high and the
cost was unstable because the file system cache was empty and the
SSTable temperature needed a bit of time to be stabilized. Shortly
after, the latency dropped and the cost stabilized.
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Figure 11: Cost-performance trade-off spectrum of MUTANT. Read latency (left)
and write latency (right) controlling throughput (horizontal axis) by varying the target

cost. Colors and symbols represent storage cost.

5.2.2 Trade-Off Spectrum. We study the cost-performance
trade-off spectrum by analyzing both database throughput (in IOPS)
and latency as the target cost changes. We first set the baseline
points with two unmodified databases: fast database and slow data-
base, as shown in Figure 11(left). Fast database used a local SSD
volume and had about 12X higher storage cost, 20x higher maxi-
mum throughput, and 10X lower read latency than slow database
that used an EBS magnetic volume.

The cost-read latency trade-off is shown in Figure 11(left). As
we increased the target cost from the lower bound (slow database’s
cost) to the upper bound (fast database’s cost), the read latency
decreased proportionally. The throughput-latency curves show
some interesting patterns. First, as you increase the throughput, the
latency increases: fast database. This is because the performance
bottleneck was the CPU, and the database saturated when the CPU
usage was at 100%. Second, as you increase the throughput, the
latency decreases: slow database. The latency decrease was from
the batching of the read IO requests at the file system layer. The
maximum throughput was 3 K I0/sec due to the rate limiting of
the EBS volume [8], rather than the CPU getting saturated. Third,
as you increase the throughput, the latency initially decreases and
then increases: MUTANT. The latency changes are the combined
effect of the benefit of IO batching in slow storage and the saturation
of CPU.

The write latencies stayed about the same throughout the target
cost changes (Figure 11(right)). The result was as expected, since
the slow storage is not directly in the write path: records are batch-
written to the slow storage asynchronously. Figure 11 confirms that
MuTtanT delivers the cost and maximum throughput trade-off: as
the target cost increased, the maximum throughput increased.

The evaluation with the QuizUp workload again confirms that
MuTAaNT delivers a seamless cost-latency trade-off. Similar to with
the YCSB workload, we replayed the QuizUp workload with two
baseline databases and MUTANT with various cost configurations
as shown in Figure 12.

5.2.3 Comparison with Other SSTable Organizations. We
compare the cost configurability of MUTANT and the other SSTable
organization algorithms, leveled organization and round-robin or-
ganization used by RocksDB and Cassandra. RocksDB organizes
SSTables by their levels into the storage devices [6]. Starting from
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Figure 12: Cost-latency trade-off with the
QuizUp workload trace. Fast and slow databases
are shown in red and blue, respectively. MUTANT with
various target costs is shown in purple.
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Figure 13: Storage cost of MUTANT and the other SSTable or-
ganization strategies. The blue line (with L) represents RocksDB’s
leveled organization. SSTables at a level before the symbol | go to
the fast storage; SSTables at a level after the symbol go to the slow
storage. The red line (with RR) represents Cassandra’s round-robin
organization, and the black line represents the seamless organization
of MUTANT.

level 0 and the first storage device, RocksDB stores all SSTables at
current level in the current storage only if all the SSTables can fit
in the storage; if the SSTables don’t fit, RocksDB looks at the next
storage device to see if the SSTables can fit. Cassandra spreads data
to storages in a round-robin manner proportional to the available
space of each of the storages [3].

Figure 13 compares the storage cost of MUTANT and the other
SSTable organization algorithms. First, neither of the algorithms is
adaptive to the changing target cost. When the target cost changes,
your only option is migrating your data to a database with a dif-
ferent cost-performance characteristic. Second, leveled SSTable
organization has limited number of configurations. With n SSTable
levels and 2 storage types, SSTables can be split in n + 1 different
ways. Thus, even when assuming target cost is to be maintained,
there is a limited number of cost-performance options.

5.3 Computational Overhead

Computational overhead includes the extra CPU cycles and the
amount of memory needed for the SSTable temperature monitoring
and SSTable placement calculation. The overhead depends on the
number of SSTables: the bigger the number of SSTables, the more
CPU and memory are used for monitoring the temperatures and
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Figure 14: Computation overhead of MUTANT. Figure (a) and (b)
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blue) and MUTANT with SSTable temperature monitoring and SSTable
organization calculation on (in red). Figure (c) shows the total number
of SSTables.

calculating the SSTable placement. We ran the YCSB workload with
10K IOPS for 8 hours both with and without the computation over-
head. For a precise measurement, we disabled SSTable migrations
to prevent the filesystem from consuming extra CPU cycles.

The modest overhead shown in Figure 14 confirms the efficient
design and implementation of MUTANT: (a) minimal CPU overhead
through an atomic counter placed in each SSTable and periodic
temperature updates, (b) minimal memory overhead from the use
of the exponential decay model in SSTable temperature, and (c)
the greedy SSTable organization that keeps both CPU and memory
overhead low. Through the experiment, the system consumed 1.67%
and 1.61% extra CPU and memory on average. The peaks in the CPU
usage are aligned with SSTable compactions that trigger rewrites for
alarge number of SSTables. There were fluctuations in the overhead
over time: the overhead was positive at one minute and negative at
the next. Likely explanations include (a) the non-deterministic key
generation in YCSB, which affects the total number of records at a
specific time between runs, which in turn influences the timing of
when SSTable compactions are made and when the JVM garbage
collector kicks in and (b) the inherent performance variability in
the multi-tenant cloud environment.

5.4 Benefits from Optimizations

5.4.1 SSTable Component Organization. To evaluate the ben-
efit of the SSTable component organization, we measure the laten-
cies of the unmodified database and the database with the SSTable
component organization turned on. Since RocksDB SSTables store
metadata and records in the same file, we keep the metadata in
memory instead of moving the metadata in the file system. SSTable
component organization benefited the “slow database” (the data-
base with an EBS magnetic volume) significantly both in terms of
the average and tail latencies, as in Figure 15. The latency reduction
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Figure 15: “Slow database” benefited significantly from

SSTable component organization. A latency comparison of the
unmodified database (in blue) and the database with SSTable compo-
nent organization on (in red).

came from avoiding (a) reading metadata, the most-frequently ac-
cessed data blocks, from the storage device and (b) unmarshalling
the data into memory. The metadata caching evaluation was fair in
terms of the total memory usage: a trade-off of allocating slightly
more memory SSTable metadata and slightly less memory for the
file system cache to SSTable records. In the experiment, when the
metadata caching was on, the database process used 2.22% more
memory on average and the file system cache used 2.22% less mem-
ory.

The latency benefit to the “fast database” was insignificant.
which, we think, was due to the significantly lesser file system
cache miss penalty of the local SSD volume, such as from the DRAM
caching provided by many SSDs today, compared to the EBS mag-
netic volume (§5.1).

5.4.2 SSTable Migration Resistance. SSTable migration resis-
tance serves as a trade-off knob between the amount of SSTables mi-
grated and the storage cost conformance (§4.3.2). We vary SSTable
migration resistance and analyze its effect on the trade-off between
the SSTable migration reduction and the target cost. As we in-
creased SSTable migration resistance, the number of migrations
first decreased and eventually plateaued out. The plateau point
depends on the workload: with the YCSB “read latest” workload,
the plateau happened at around 13% resistance, as in Figure 16(a).
The storage cost increased as the migration resistance increased,
as in Figure 16(b). This is because, with modern web workload of
which most SSTables are migrated towards the slow storage device,
a high resistance makes SSTables stay longer in the fast, expensive
storage device than a low resistance. Storage cost increase was
linearly bounded to SSTable migration resistance: in the experi-
ment, with a ratio of about 0.08 (relative cost / SSTable migration
resistance). One should configure the migration resistance between
0 and the plateau point of the number of SSTables migrated (13% in
this example), because there is no more benefit from the SSTable
migration reduction beyond the plateau point.
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Figure 16: SSTable migration resistance’s effect on the SSTable
migrations and cost SLO conformance. Figure (a) shows how the
amount of SSTable migrations changes by SSTable migration resis-
tance, and (b) shows how the storage cost changes.

5.4.3 SSTable Compaction-Migration. SSTable compaction-
migration integration is an optimization that piggybacks SSTable
migrations on SSTable compactions, thus reducing the amount of
SSTable migrations (§4.3.1). The breakdown of the SSTable com-
pactions in Figure 17 shows that 20.37% of SSTable migrations were
saved from the integration. The number of SSTable compactions
remained consistent throughout the SSTable migration resistance
range, since the compactions were triggered solely by the leveled
SSTable organizations, independent of the SSTable temperature
changes.

6 RELATED WORK

LSM Tree Databases: LSM trees, invented by O’Neil [33], have
become an attractive data structure for database systems in the past
decade owing to their high write throughput and suitability for
serving modern web workloads [1, 7, 16, 21, 25], These databases
organize SSTables, the building blocks of a table, using various
strategies that strike different read-write performance trade-offs:
(a) size-tiered compaction used by BigTable, HBase, and Cassandra,
(b) leveled compaction used by Cassandra, LevelDB, and RocksDB,
(c) time window compaction used by Cassandra, and (d) universal
compaction used by RocksDB [4, 20]. MUTANT uses leveled com-
paction for its small SSTable sizes, which allows SSTables to be
organized across different storage types with minimal changes to
the underlying database. SSTable sizes under leveled compaction
are 64 MiB in RocksDB or 160 MiB in Cassandra by default; with
the other compaction strategies, there is no upper bound on how
much an SSTable can grow.

Optimizations to LSM tree databases include bLSM, which varies
the exponential fanout in the SSTable hierarchy to bound the num-
ber of seeks [34], Partitioned Exponential Files that exploits prop-
erties of HDD head schedulers [22], WiscKey that separates keys
from values to reduce write amplification [29], and work of Lim
et al. that analyzes and optimizes the SSTable compaction param-
eters [27]. These optimizations are orthogonal to how MuTANT
organizes SSTables and can complement our approach.
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Figure 17: Breakdown of SSTable compactions by SSTable mi-
gration resistance.

Multi-Storage, LSM Tree Databases: Several prior works use
LSM tree databases across multiple storages. Time-series databases
such as LHAM [32] splits the data at the the component (B+ tree)
boundaries, storing lower level component in slower and cheaper
storages. RocksDB organizes SSTables by levels and store lower-
level SSTables in slower and cheaper storages [6]. Cassandra stores
SSTables to storages in a round-robin manner to guarantees even
usage of storage devices [3].

In comparison, the cost-performance trade-offs of these ap-
proaches lack both configurability and versatility. First, databases
are deployed based on a static cost-performance trade-off, indepen-
dent of the database’s lifetime. Any modifications and adjustments
involve laborious data migration. Second, the trade-offs are lim-
ited in options. Both with LHAM and RocksDB’s leveled SSTable
organization, the data is split in a coarse-grained manner. LHAM
partitions data at the the component (B+ tree) boundaries, leading
to only a small number of components since the components grow
exponentially in size. Leveled SSTable organization, which parti-
tions data at the level boundaries, typically produces at most 4 to
5 levels. Cassandra’s round-robin organization provides only one
option, dividing SSTables evenly across storages.

These multi-storage, LSM tree database storage systems share
the same idea as MUTANT: separating data into different storages
based on their cost-performance characteristics. To the best of our
knowledge, however, MUTANT is the first to provide a seamless
cost-performance trade-off, by taking advantage of the internal
LSM tree-based database store layout, the data access locality from
modern web workloads, and the elastic cloud storage model.

7 CONCLUSIONS

We have presented MUTANT: an LSM tree-based NoSQL database
storage layer that delivers seamless cost-performance trade-offs
with efficient algorithms that captures SSTable access popularity,
organizes SSTables into different types of storage devices to meet
the changing target cost. Future work includes exploring (a) latency
SLO enforcement in addition to the cost SLO enforcement and
(b) finer-grained storage organization that addresses microscopic,
record-level access frequency changes.
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