
PACEMAKER
Avoiding HeART attacks in storage clusters with disk-adaptive redundancy

Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng Yang,
K. V. Rashmi, Gregory R. Ganger

Carnegie Mellon University

Abstract
Data redundancy provides resilience in large-scale storage
clusters, but imposes significant cost overhead. Substantial
space-savings can be realized by tuning redundancy schemes
to observed disk failure rates. However, prior design propos-
als for such tuning are unusable in real-world clusters, because
the IO load of transitions between schemes overwhelms the
storage infrastructure (termed transition overload).

This paper analyzes traces for millions of disks from pro-
duction systems at Google, NetApp, and Backblaze to expose
and understand transition overload as a roadblock to disk-
adaptive redundancy: transition IO under existing approaches
can consume 100% cluster IO continuously for several weeks.
Building on the insights drawn, we present PACEMAKER, a
low-overhead disk-adaptive redundancy orchestrator. PACE-
MAKER mitigates transition overload by (1) proactively orga-
nizing data layouts to make future transitions efficient, and
(2) initiating transitions proactively in a manner that avoids
urgency while not compromising on space-savings. Evalua-
tion of PACEMAKER with traces from four large (110K–450K
disks) production clusters show that the transition IO require-
ment decreases to never needing more than 5% cluster IO
bandwidth (0.2–0.4% on average). PACEMAKER achieves
this while providing overall space-savings of 14–20% and
never leaving data under-protected. We also describe and
experiment with an integration of PACEMAKER into HDFS.

1 Introduction
Distributed storage systems use data redundancy to pro-

tect data in the face of disk failures [13, 15, 56]. While it
provides resilience, redundancy imposes significant cost over-
head. Most large-scale systems today erasure code most of
the data stored, instead of replicating, which helps to reduce
the space overhead well below 100% [13, 24, 44, 48, 62, 67].
Despite this, space overhead remains a key concern in large-
scale systems since it directly translates to an increase in
the number of disks and the associated increase in capital,
operating and energy costs [13, 24, 44, 48].

Storage clusters are made up of disks from a
mix of makes/models acquired over time, and different
makes/models have highly varying failure rates [27, 32, 41].
Despite that, storage clusters employ a “one-size-fits-all-disks”
approach to choosing redundancy levels, without considering
failure rate differences among disks. Hence, space overhead
is often inflated by overly conservative redundancy levels,
chosen to ensure sufficient protection for the most failure-
prone disks in the cluster. Although tempting, the overhead

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100

To
ta

l I
O 

pe
r d

ay
 (%

)

Transition IO Num disks (right axis)

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

(a) Transition IO for HeART [27] on Google Cluster1.

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100

To
ta

l I
O 

pe
r d

ay
 (%

)

Transition IO
Num disks (right axis)

Transition IO cap

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

(b) Transition IO for PACEMAKER on Google Cluster1.

Figure 1: Fraction of total cluster IO bandwidth needed to use disk-
adaptive redundancy for a Google storage cluster’s first three years.
The state-of-the-art proposal [27] shown in (a) would require up
to 100% of the cluster bandwidth for extended periods, whereas
PACEMAKER shown in (b) always fits its IO under a cap (5%). The
light gray region shows the disk count (right Y-axis) over time.

cannot be removed by using very “wide” codes (which can
provide high reliability with low storage overhead) for all
data, due to the prohibitive reconstruction cost induced by
the most failure-prone disks (more details in § 2). An excit-
ing alternative is to dynamically adapt redundancy choices
to observed failure rates (AFRs)1 for different disks, which
recent proposals suggest could substantially reduce the space
overhead [27].

Adapting redundancy involves dynamic transitioning of
redundancy schemes, because AFRs must be learned from
observation of deployed disks and because AFRs change over
time due to disk aging. Changing already encoded data from
one redundancy scheme to another, for example from an era-
sure code with parameters k1-of-n1 to k2-of-n2 (where k-of-n
denotes k data chunks and n− k parity chunks; more de-
tails in § 2), can be exorbitantly IO intensive. Existing de-
signs for disk-adaptive redundancy are rendered unusable by
overwhelming bursts of urgent transition IO when applied to
real-world storage clusters. Indeed, as illustrated in Fig. 1a,
our analyses of production traces show extended periods of
needing 100% of the cluster’s IO bandwidth for transitions.
We refer to this as the transition overload problem. At its
core, transition overload occurs whenever an observed AFR
increase for a subset of disks requires too much urgent tran-
sition IO in order to keep data safe. Existing designs for

1AFR describes the expected fraction of disks that experience failure in a
typical year.



disk-adaptive redundancy perform redundancy transitions as
a reaction to AFR changes. Since prior designs are reactive,
for an increase in AFR, the data is already under-protected
by the time the transition to increase redundancy is issued.
And it will continue to be under-protected until that transition
completes. For example, around 2019-09 in Fig. 1a, data was
under-protected for over a month, even though the entire clus-
ter’s IO bandwidth was used solely for redundancy transitions.
Simple rate-limiting to reduce urgent bursts of IO would only
exacerbate this problem causing data-reliability goals to be
violated for even longer.

To understand the causes of transition overload and inform
solutions, we analyse multi-year deployment and failure logs
for over 5.3 million disks from Google, NetApp and Back-
blaze. Two common transition overload patterns are observed.
First, sometimes disks are added in tens or hundreds over
time, which we call trickle deployments. A statistically confi-
dent AFR observation requires thousands of disks. Thus, by
the time it is known that AFR for a specific make/model and
age is too high for the redundancy used, the oldest thousands
of that make/model will be past that age. At that point, all of
those disks need immediate transition. Second, sometimes
disks are added in batches of many thousands, which we call
step deployments. Steps have sufficient disks for statistically
confident AFR estimation. However, when a step reaches an
age where the AFR is too high for the redundancy used, all
disks of the step need immediate transition.

This paper introduces PACEMAKER, a new disk-adaptive re-
dundancy orchestration system that exploits insights from the
aforementioned analyses to eliminate the transition overload
problem. PACEMAKER proactively organizes data layouts to
enable efficient transitions for each deployment pattern, reduc-
ing total transition IO by over 90%. Indeed, by virtue of its
reduced total transition IO, PACEMAKER can afford to use ex-
tra transitions to reap increased space-savings. PACEMAKER
also proactively initiates anticipated transitions sufficiently
in advance that the resulting transition IO can be rate-limited
without placing data at risk. Fig. 1b provides a peek into the
final result: PACEMAKER achieves disk-adaptive redundancy
with substantially less total transition IO and never exceeds a
specified transition IO cap (5% in the graph).

We evaluate PACEMAKER using logs containing all disk
deployment, failure, and decommissioning events from four
production storage clusters: three 160K–450K-disk Google
clusters and a ≈110K-disk cluster used for the Backblaze
Internet backup service [4]. On all four clusters, PACEMAKER
provides disk-adaptive redundancy while using less than 0.4%
of cluster IO bandwidth for transitions on average, and never
exceeding the specified rate limit (e.g., 5%) on IO bandwidth.
Yet, despite its proactive approach, PACEMAKER loses less
than 3% of the space-savings as compared to to an idealized
system with perfectly-timed and instant transitions. Specifi-
cally, PACEMAKER provides 14–20% average space-savings
compared to a one-size-fits-all-disks approach, without ever

failing to meet the target data reliability and with no tran-
sition overload. We note that this is substantial savings for
large-scale systems, where even a single-digit space-savings
is worth the engineering effort. For example, in aggregate,
the four clusters would need ≈200K fewer disks.

We also implement PACEMAKER in HDFS, demonstrat-
ing that PACEMAKER’s mechanisms fit into an existing
cluster storage system with minimal changes. Comple-
menting our longitudinal evaluation using traces from large
scale clusters, we report measurements of redundancy tran-
sitions in PACEMAKER-enhanced HDFS via small-scale
cluster experiments. Prototype of HDFS with Pacemaker
is open-sourced and is available at https://github.com/
thesys-lab/pacemaker-hdfs.git.

This paper makes five primary contributions. First, it
demonstrates that transition overload is a roadblock that pre-
cludes use of previous disk-adaptive redundancy proposals.
Second, it presents insights into the sources of transition
overload from longitudinal analyses of deployment and fail-
ure logs for 5.3 million disks from three large organizations.
Third, it describes PACEMAKER’s novel techniques, designed
based on insights drawn from these analyses, for safe disk-
adaptive redundancy without transition overload. Fourth, it
evaluates PACEMAKER’s policies for four large real-world
storage clusters, demonstrating their effectiveness for a range
of deployment and disk failure patterns. Fifth, it describes in-
tegration of and experiments with PACEMAKER’s techniques
in HDFS, demonstrating their feasibility, functionality, and
ease of integration into a cluster storage implementation.

2 Whither disk-adaptive redundancy
Cluster storage systems and data reliability. Modern

storage clusters scale to huge capacities by combining up
to hundreds of thousands of storage devices into a single stor-
age system [15,56,63]. In general, there is a metadata service
that tracks data locations (and other metadata) and a large
number of storage servers that each have up to tens of disks.
Data is partitioned into chunks that are spread among the
storage servers/devices. Although hot/warm data is now often
stored on Flash SSDs, cost considerations lead to the majority
of data continuing to be stored on mechanical disks (HDDs)
for the foreseeable future [6, 7, 54]. For the rest of the paper,
any reference to a “device” or “disk” implies HDDs.

Disk failures are common and storage clusters use data
redundancy to protect against irrecoverable data loss in the
face of disk failures [4,15,24,41,43,44,48]. For hot data, often
replication is used for performance benefits. But, for most
bulk and colder data, cost considerations have led to the use of
erasure coding schemes. Under a k-of-n coding scheme, each
set of k data chunks are coupled with n-k “parity chunks” to
form a “stripe”. A k-of-n scheme provides tolerance to (n−k)
failures with a space overhead of n

k . Thus, erasure coding
achieves substantially lower space overhead for tolerating a
given number of failures. Schemes like 6-of-9 and 10-of-14

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git


are commonly used in real-world deployments [13, 43, 44,
48]. Under erasure coding, additional work is involved in
recovering from a device failure. To reconstruct a lost chunk,
k remaining chunks from the stripe must be read.

The redundancy scheme selection problem. The reliabil-
ity of data stored redundantly is often quantified as mean-time-
to-data-loss (MTTDL) [17], which essentially captures the
average time until more than the tolerated number of chunks
are lost. MTTDL is calculated using the disks’ AFR and its
mean-time-to-repair (MTTR).

Large clusters are built over time, and hence usually consist
of a mix of disks belonging to multiple makes/models depend-
ing on which options were most cost effective at each time.
AFR values vary significantly between makes/models and
disks of different ages [27, 32, 41, 50]. Since disks have dif-
ferent AFRs, computing MTTDL of a candidate redundancy
scheme for a large-scale storage cluster is often difficult.

The MTTDL equations can still be used to guide decisions,
as long as a sufficiently high AFR value is used. For ex-
ample, if the highest AFR value possible for any deployed
make/model at any age is used, the computed MTTDL will
be a lower bound. So long as the lower bound on MTTDL
meets the target MTTDL, the data is adequately reliable. Un-
fortunately, the range of possible AFR values in a large stor-
age cluster is generally quite large (over an order of magni-
tude) [27,32,41,52]. Since the overall average is closer to the
lower end of the AFR range, the highest AFR value is a conser-
vative over-estimate for most disks. The resulting MTTDLs
are thus loose lower bounds, prompting decision-makers to
use a one-size-fits-all scheme with excessive redundancy lead-
ing to wasted space.

Using wide schemes with large number of parities (e.g.,
30-of-36) can achieve the desired MTTDL while keeping
the storage overhead low enough to make disk-adaptive re-
dundancy appear not worth the effort. But, while this might
seem like a panacea, wide schemes in high-AFR regimes
cause significant increase in failure reconstruction IO traffic.
The failure reconstruction IO is derived by multiplying the
AFR with the number of data chunks in each stripe. Thus,
if either of these quantities are excessively high, or both are
moderately high, it can lead to overwhelmingly high failure
reconstruction IO. In addition, wide schemes also result in
higher tail latencies for individual disk reconstructions be-
cause of having to read from many more disks. Combined,
these reasons prevent use of wide schemes for all data all the
time from being a viable solution for most systems.

Disk-adaptive redundancy. Since the problem arises
from using a single AFR value, a promising alternative is
to adapt redundancy for subsets of disks with similar AFRs.
A recent proposal, heterogeneity-aware redundancy tuner
(HeART) [27], suggests treating subsets of deployed disks
with different AFR characteristics differently. Specifically,
HeART adapts redundancy of each disk by observing its fail-

ure rate on the fly2 depending on its make/model and its cur-
rent age. It is well known that AFR of disks follow a “bathtub”
shape with three distinct phases of life: AFR is high in “in-
fancy” (1-3 months), low and stable during its “useful life”
(3-5 years), and high during the “wearout” (a few months be-
fore decommissioning). HeART uses a default (one-size-fits-
all) redundancy scheme for each new disk’s infancy. It then
dynamically changes the redundancy to a scheme adapted to
the observed useful life AFR for that disk’s make/model, and
then dynamically changes back to the default scheme at the
end of useful life. The per-make/model useful life redundancy
schemes typically have much lower space overhead than the
default scheme. This suggests the ability to maintain target
MTTDL with many fewer disks (i.e., lower cost).

Although exciting, the design of HeART overlooks a cru-
cial element: the IO cost associated with changing the redun-
dancy schemes. Changing already encoded data under one
erasure code to another can be exorbitantly IO intensive. In-
deed, our evaluation of HeART on real-world storage cluster
logs reveal extended periods where data safety is at risk and
where 100% cluster IO bandwidth is consumed for scheme
changes. We call this problem transition overload.

An enticing solution that might appear to mitigate transition
overload is to adapt redundancy schemes only by removing
parities in low-AFR regimes and adding parities in high-AFR
regimes. While this solution eliminates transition IO when re-
ducing the level of redundancy, it does only marginally better
when redundancy needs to be increased, because new parity
creation cannot avoid reading all data chunks from each stripe.
What makes this worse is that transitions that increase redun-
dancy are time-critical, since delaying them would miss the
MTTDL target and leave the data under-protected. Moreover,
addition / removal of a parity chunk massively changes the
stripe’s MTTDL compared to addition / removal of a data
chunk. For example, a 6-of-9 MTTDL is 10000× higher
than 6-of-8 MTTDL, but is only 1.5× higher than 7-of-10
MTTDL. AFR changes would almost never be large enough
to safely remove a parity, given default schemes like 6-of-
9, eliminating almost all potential benefits of disk-adaptive
redundancy.

This paper analyzes disk deployment and failure data from
large-scale production clusters to discover sources of transi-
tion overload and informs the design of a solution. It then de-
scribes and evaluates PACEMAKER, which realizes the dream
of safe disk-adaptive redundancy without transition overload.

3 Longitudinal production trace analyses
This section presents an analysis of multi-year disk reli-

ability logs and deployment characteristics of 5.3 million
HDDs, covering over 60 makes/models from real-world en-
vironments. Key insights presented here shed light on the

2Although it may be tempting to use AFR values taken from manufac-
turer’s specifications, several studies have shown that failure rates observed
in practice often do not match those [41, 50, 52].



10 1

101

A
FR

 (
%

)

[0, 3) [3, 4) [4, 5) [5, 6)

Age of oldest disk (years)

(a) Spread of make/model AFRs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Age (years)

0

2

4

A
FR

 (
%

)

(b) AFR distribution over disk life

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Age
Number of useful life phases

0

1000

2000

d
a
y
s

2 3 4
Tolerance: AFR ratio (max / min)

(c) Approximate useful-life length

Figure 2: (a) AFR spread for over 50 makes/models from NetApp binned by the age of the oldest disk. Each box corresponds to a unique
make/model, and at least 10000 disks of each make/model were observed (outlier AFR values omitted). (b) Distribution of AFR calculated
over consecutive non-overlapping six-month periods for NetApp disks, showing the gradual rise of AFR with age (outliers omitted). (c)
Approximation of useful life length for NetApp disks for 1-5 consecutive phases of useful life and three different tolerance levels.

sources of transition overload and challenges / opportunities
for a robust disk-adaptive redundancy solution.

The data. Our largest dataset comes from NetApp and con-
tains information about disks deployed in filers (file servers).
Each filer reports the health of each disk periodically (typi-
cally once a fortnight) using their AutoSupport [29] system.
We analyzed the data for a subset of their deployed disks,
which included over 50 makes/models and over 4.3 million
disks total. As observed in previous studies [27, 41, 50], we
observe well over an order of magnitude difference between
the highest and lowest useful-life AFRs (see Fig. 2a).

Our other datasets come from large storage clusters de-
ployed at Google and the Backblaze Internet backup service.
Although the basic disk characteristics (e.g., AFR heterogene-
ity and its behavior discussed below) are similar to the NetApp
dataset, these datasets also capture the evolution and behavior
in our target context (large-scale storage clusters), and thus
are also used in the evaluation detailed in (§7). The particular
Google clusters were selected based on their longitudinal data
availability, but were not otherwise screened for favorability.

For each cluster, the multi-year log records (daily) all disk
deployment, failure, and decommissioning events from birth
of the cluster until the date of the log snapshot. Google
Cluster1’s disk population over three years included ≈350K
disks of 7 makes/models. Google Cluster2’s population over
2.5 years included ≈450K disks of 4 makes/models. Google
Cluster3’s population over 3 years included ≈160K disks of
3 makes/models. The Backblaze cluster’s population since
2013 included ≈110K disks of 7 makes/models.

3.1 Causes of transition overload
Disk deployment patterns. We observe disk deployments

occurring in two distinct patterns, which we label trickle
and step. Trickle-deployed disks are added to a cluster fre-
quently (weekly or even daily) over time by the tens and
hundreds. For example, the slow rise in disk count seen
between 2018-01 and 2018-07 in Fig. 1 represents a series
of trickle-deployments. In contrast, a step-deployment intro-
duces many thousands of disks into the cluster “at once” (over
a span of a few days), followed by potentially months of no
new step-deployments. The sharp rises in disk count around
2017-12 and 2019-11 in Fig. 1 represent step-deployments.

A given cluster may be entirely trickle-deployed (like the

Backblaze cluster), entirely step-deployed (like Google Clus-
ter2), or a mix of the two (like Google Cluster1 and Cluster3).
Disks of a step are typically of the same make/model.

Learning AFR curves online. Disk-adaptive redundancy
involves learning the AFR curve for each make/model by
observing failures among deployed disks of that make/model.
Because AFR is a statistical measure, the larger the population
of disks observed at a given age, the lower is the uncertainty
in the calculated AFR at that age. We have found that a
few thousand disks need to be observed to obtain sufficiently
accurate AFR measurements.

Transition overload for trickle-deployed disks. Since
trickle-deployed disks are deployed in tiny batches over time,
several months can pass before the required number of disks
of a new make/model are past any given age. Thus, by the
time the required number of disks can be observed at the age
that is eventually identified as having too-high an AFR and
requiring increased redundancy, data on the older disks will
have been left under-protected for months. And, the thousands
of already-older disks need to be immediately transitioned to
a stronger redundancy scheme, together with the newest disks
to reach that age. This results in transition overload.

Transition overload for step-deployed disks. Assum-
ing that they are of the same make/model, a batch of step-
deployed disks will have the same age and AFR, and indeed
represent a large enough population for confident learning of
the AFR curve as they age. But, this means that all of those
disks will reach AFR values together, as they age. So, when
their AFR rises to the point where the redundancy must be
increased to keep data safe, all of the disks must transition
together to the new safer redundancy scheme. Worse, if they
are the first disks of the given make/model deployed in the
cluster, which is often true in the clusters studied, then the sys-
tem adapting the redundancy will learn of the need only when
the age in question is reached. At that point, all data stored
on the entire batch of disks is unsafe and needs immediate
transitioning. This results in transition overload.

3.2 Informing a solution
Analyzing the disk logs has exposed a number of observa-

tions that provide hope and guide the design of PACEMAKER.
The AFR curves we observed deviate substantially from the
canonical representation where infancy and wearout periods



are identically looking and have high AFR values, and AFR
in useful life is flat and low throughout.

AFRs rise gradually over time with no clear wearout.
AFR curves generally exhibit neither a flat useful life phase
nor a sudden transition to so-called wearout. Rather, in gen-
eral, it was observed that AFR curves rise gradually as a
function of disk age. Fig. 2b shows the gradual rise in AFR
over six month periods of disk lifetimes. Each box represents
the AFR of disks whose age corresponds to the six-month
period denoted along the X-axis. AFR curves for individ-
ual makes/models (e.g., Figs. 5b and 5d) are consistent with
this aggregate illustration. Importantly, none of the over
60 makes/models from Google, Backblaze and NetApp dis-
played sudden onset of wearout.

Gradual increases in AFR, rather than sudden onset of
wearout, suggests that one could anticipate a step-deployed
batch of disks approaching an AFR threshold. This is one
foundation on which PACEMAKER’s proactive transitioning
approach rests.

Useful life could have multiple phases. Given the grad-
ual rise of AFRs, useful life can be decomposed into multiple,
piece-wise constant phases. Fig. 2c shows an approximation
of the length of useful life when multiple phases are consid-
ered. Each box in the figure represents the distribution over
different make/models of the approximate length of useful life.
Useful life is approximated by considering the longest period
of time which can be decomposed into multiple consecutive
phases (number of phases indicated by the bottom X-axis)
such that the ratio between the maximum and minimum AFR
in each phase is under a given tolerance level (indicated by
the top X-axis). The last box indicates the distribution over
make/models of the age of the oldest disk, which is an up-
per bound to the length of useful life. As shown by Fig. 2c,
the length of useful life can be significantly extended (for all
tolerance levels) by considering more than one phase. Fur-
thermore, the data show that a small number of phases suffice
in practice, as the approximate length of useful life changes
by little when considering four or more phases.

Infancy often short-lived. Disks may go through (poten-
tially) multiple rounds of so-called “burn-in” testing. The first
tests may happen at the manufacturer’s site. There may be
additional burn-in tests done at the deployment site allowing
most of the infant mortality to be captured before the disk is
deployed in production. For the NetApp and Google disks,
we see the AFR drop sharply and plateau by 20 days for most
of the makes/models. In contrast, the Backblaze disks display
a slightly longer and higher AFR during infancy, which can
be directly attributed to their less aggressive on-site burn-in.

PACEMAKER’s design is heavily influenced from these
learnings, as will be explained in the next section.

4 Design goals
PACEMAKER is an IO efficient redundancy orchestrator

for storage clusters that support disk-adaptive redundancy.

Term Definition

Dgroup Group of disks of the same make/model.
Transition The act of changing the redundancy scheme.
RDn transition Transition to a lower level of redundancy.
RUp transition Transition to a higher level of redundancy.
peak-IO-cap IO bandwidth cap for transitions.
Rgroup Group of disks using the same redundancy

with placement restricted to the group of disks.
Rgroup0 Rgroup using the default one-scheme-fits-all

redundancy used in storage clusters today.
Unspecialized disks Disks that are a part of Rgroup0.
Specialized disks Disks that are not part of Rgroup0.
Canary disks First few thousand disks of a trickle-deployed

Dgroup used to learn AFR curve.
Tolerated-AFR Max AFR for which redundancy scheme meets

reliability constraint.
Threshold-AFR The AFR threshold crossing which triggers

an RUp transition for step-deployed disks.

Table 1: Definitions of PACEMAKER’s terms.

Before going into the design goals for PACEMAKER, we first
chronicle a disk’s lifecycle, introducing the terminology that
will be used in the rest of the paper (defined in Table 1).

Disk lifecycle under PACEMAKER. Throughout its life,
each disk under PACEMAKER simultaneously belongs to a
Dgroup and an Rgroup. There are as many Dgroups in a
cluster as there are unique disk makes/models. Rgroups on
the other hand are a function of redundancy schemes and
placement restrictions. Each Rgroup has an associated re-
dundancy scheme, and its data (encoded stripes) must reside
completely within that Rgroup’s disks. Multiple Rgroups can
use the same redundancy scheme, but no stripe may span
across Rgroups. The Dgroup of a disk never changes, but a
disk may transition through multiple Rgroups during its life-
time. At the time of deployment (or “birth”), the disk belongs
to Rgroup0, and is termed as an unspecialized disk. Disks
in Rgroup0 use the default redundancy scheme, i.e. the con-
servative one-scheme-fits-all scheme used in storage clusters
that do not have disk-adaptive redundancy. The redundancy
scheme employed for a disk (and hence its Rgroup) changes
via transitions. The first transition any disk undergoes is an
RDn transition. A RDn transition changes the disk’s Rgroup
to one with lower redundancy, i.e. more optimized for space.
Whenever the disk departs from Rgroup0, it is termed as a
specialized disk. Disks depart from Rgroup0 at the end of
their infancy. Since infancy is short-lived (§3.2), PACEMAKER
only considers one RDn transition for each disk.

The first RDn transition occurs at the start of the disk’s
useful life, and marks the start of its specialization period.
As explained in §3.2, a disk may experience multiple useful
life phases. PACEMAKER performs a transition at the start
of each useful life phase. After the first (and only) RDn
transition, each subsequent transition is an RUp transition.
An RUp transition changes the disk’s Rgroup to one with
higher redundancy, i.e. less optimized for space, but the disk
is still considered a specialized disk unless the Rgroup that
the disk is being RUp transitioned to is Rgroup0. The space-



savings (and thus cost-savings) associated with disk-adaptive
redundancy are proportional to the fraction of life the disks
remain specialized for.

Key decisions. To adapt redundancy throughout a disk’s
lifecycle as chronicled above, three key decisions related to
transitions must be made

1. When should the disks transition?
2. Which Rgroup should the disks transition to?
3. How should the disks transition?
Constraints. The above decisions need to be taken such

that a set of constraints are met. An obvious constraint, cen-
tral to any storage system, is that of data reliability. The
reliability constraint mandates that all data must always meet
a predefined target MTTDL. Another important constraint
is the failure reconstruction IO constraint. This constraint
bounds the IO spent on data reconstruction of failed disks,
which as explained in §2 is proportional to AFR and scheme
width. This is why wide schemes cannot be used for all disks
all the time, but they can be used for low-AFR regimes of
disk lifetimes (as discussed in §2).

Existing approaches to disk-adaptive redundancy make
their decisions on the basis of only these constraints [27], but
fail to consider the equally important IO caused by redun-
dancy transitions. Ignoring this causes the transition overload
problem, which proves to be a show-stopper for disk-adaptive
redundancy systems. PACEMAKER treats transition IO as
a first class citizen by taking it into account for each of its
three key decisions. As such, PACEMAKER enforces carefully
designed constraints on transition IO as well.

Designing IO constraints on transitions. Apart from
serving foreground IO requests, a storage cluster performs
numerous background tasks like scrubbing and load balanc-
ing [5,38,49]. Redundancy management is also a background
task. In current storage clusters, redundancy management
tasks predominantly consist of performing data redundancy
(e.g. replicating or encoding data) and reconstructing data
of failed or otherwise unavailable disks. Disk-adaptive re-
dundancy systems add redundancy transitions to the list of
IO-intensive background tasks.

There are two goals for background tasks: Goal 1: they
are not too much work, and Goal 2: they interfere as little as
possible with foreground IO. PACEMAKER applies two IO
constraints on background transition tasks to achieve these
goals: (1) average-IO constraint and (2) peak-IO constraint.
The average-IO constraint achieves Goal 1 by allowing stor-
age administrators to specify a cap on the fraction of the IO
bandwidth of a disk that can be used for transitions over its
lifetime. For example, if a disk can transition in 1 day using
100% of its IO bandwidth, then an average-IO constraint of
1% would mean that the disk will transition at most once every
100 days. The peak-IO constraint achieves Goal 2 by allowing
storage administrators to specify the peak rate (defined as the
peak-IO-cap) at which transitions can occur so as to limit
their interference with foreground traffic. Continuing the pre-

P

P P

P

PACEMAKER
Proactive-

transition-initiator

Rgroup-planner

FS Metadata
service

Disk health
monitoring service

Change point
detector

AFR curve learner

Transition-executor

new Rgroup,
disks

de
pl

oy
m

en
t,

co
nf

ig
 d

at
a

new AFR,
old AFR

di
sk

 fa
ilu

re
s

failure data

IO

pl
ac

em
en

t c
ha

ng
es

PA
C

EM
A

K
ER

 M
et

ad
at

a disks

rate limit, IO
Rate-limiter

Figure 3: PACEMAKER architecture.

vious example, if the peak-IO-cap is set at 5%, the disk that
would have taken 1 day to transition at 100% IO bandwidth
would now take at least 20 days. The average-IO constraint
and the peak-IO-cap can be configured based on how busy the
cluster is. For example, a cluster designed for data archival
would have a lower foreground traffic, compared to a cluster
designed for serving ads or recommendations. Thus, low-
traffic clusters can set a higher peak-IO-cap resulting in faster
transitions and potentially increased space-savings.

Design goals. The key design goals are to answer the three
questions related to transitions such that the space-savings are
maximized and the following constraints are met: (1) reliabil-
ity constraint on all data all the time, (2) failure reconstruction
IO constraint on all disks all the time, (3) peak-IO constraint
on all disks all the time, and (4) average-IO constraint on all
disks over time.

5 Design of PACEMAKER

Fig. 3 shows the high level architecture of PACEMAKER
and how it interacts with some other components of a storage
cluster. The three main components of PACEMAKER corre-
spond to the three key decisions that the system makes as
discussed in §4. The first main component of PACEMAKER
is the proactive-transition-initiator (§5.1), which determines
when to transition disks using the AFR curves and the disk
deployment information. The information of the transition-
ing disks and their observed AFR is passed to the Rgroup-
planner (§5.2), which chooses the Rgroup to which the disks
should transition. The Rgroup-planner passes the informa-
tion of the transitioning disks and the target Rgroup to the
transition-executor (§5.3). The transition-executor addresses
how to transition the disks to the planned Rgroup in the most
IO-efficient way.

Additionally, PACEMAKER also maintains its own meta-
data and a simple rate-limiter. PACEMAKER metadata in-
teracts with all of PACEMAKER’s components and also the



storage cluster’s metadata service. It maintains various con-
figuration settings of a PACEMAKER installation along with
the disk deployment information that guides transition de-
cisions. The rate-limiter rate-limits the IO load generated
by any transition as per administrator specified limits. Other
cluster components external-to-PACEMAKER that inform it
are the AFR curve learner and the change point detector. As
is evident from their names, these components learn the AFR
curve3 of each Dgroup and identify change points for redun-
dancy transitions. The AFR curve learner receives failure
data from the disk health monitoring service, which monitors
the disk fleet and maintains their vitals.

5.1 Proactive-transition-initiator
Proactive-transition-initiator’s role is to determine when

to transition the disks. Below we explain PACEMAKER’s
methodology for making this decision for the two types of
transitions (RDn and RUp) and the two types of deployments
(step and trickle).
5.1.1 Deciding when to RDn a disk

Recall that a disk’s first transition is an RDn transition.
As soon as proactive-transition-initiator observes (in a sta-
tistically accurate manner) that the AFR has decreased suffi-
ciently, and is stable, it performs an RDn transition from the
default scheme (i.e., from Rgroup0) employed in infancy to a
more space-efficient scheme. This is the only RDn transition
in a disk’s lifetime.
5.1.2 Deciding when to RUp a disk

RUp transitions are performed either when there are too
few disks in any Rgroup such that data placement is heavily
restricted (which we term purging an Rgroup), or when there
is a rise in AFR such that the reliability constraint is (going to
be) violated. Purging an Rgroup involves RUp transitioning
all of its disks to an Rgroup with higher redundancy. This
transition isn’t an imminent threat to reliability, and there-
fore can be done in a relaxed manner without violating the
reliability constraint as explained in §5.3.

However, most RUp transitions in a storage cluster are
done in response to a rise in AFR. These are challenging with
respect to meeting IO constraints due to the associated risk of
violating the reliability constraints whenever the AFR rises
beyond the AFR tolerated by the redundancy scheme (termed
tolerated-AFR).

In order to be able to safely rate-limit the IO load due to
RUp transitions, PACEMAKER takes a proactive approach.
The key is in determining when to initiate a proactive RUp
transition such that the transition can be completed before
the AFR crosses the tolerated-AFR, while adhering to the IO
and the reliability constraints without compromising much
on space-savings. To do so, the proactive-transition-initiator
assumes that its transitions will proceed as per the peak-IO
constraint, which is ensured by the transition-executor. PACE-
MAKER’s methodology for determining when to initiate a

3The AFR estimation methodology employed is detailed in [26].

proactive RUp transition is tailored differently for trickle ver-
sus for step deployments, since they raise different challenges.

Trickle deployments. For trickle-deployed disks, PACE-
MAKER considers two category of disks: (1) first disks to be
deployed from any particular trickle-deployed Dgroup, and
(2) disks from that Dgroup that are deployed later.

PACEMAKER labels the first C deployed disks of a Dgroup
as canary disks, where C is a configurable, high enough num-
ber of disks to yield statistically significant AFR observations.
For example, based on our disk analyses, we observe that C in
low thousands (e.g., 3000) is sufficient. The canary disks of
any Dgroup are the first to undergo the various phases of life
for that Dgroup, and these observations are used to learn the
AFR curve for that Dgroup. The AFR value for the Dgroup at
any particular age is not known (with statistical confidence)
until all canary disks go past that age. Furthermore, due to
the trickle nature of the deployment, the canary disks would
themselves have been deployed over weeks if not months.
Thus, AFR for the canary disks can be ascertained only in
retrospect. PACEMAKER never changes the redundancy of the
canary disks to avoid them from ever violating the reliability
constraint. This does not significantly reduce space-savings,
since C is expected to be small relative to the total number of
disks of a Dgroup (usually in the tens of thousands).

The disks that are deployed later in any particular Dgroup
are easier to handle, since the Dgroup’s AFR curve would
have been learned by observing the canaries. Thus, the date
at which a disk among the later-deployed disks needs to RUp
to meet the reliability constraints is known in advance by the
proactive-transition-initiator, which it uses to issue proactive
RUp transitions.

Step deployments. Recall that in a step deployment, most
disks of a Dgroup may be deployed within a few days. So, ca-
naries are not a good solution, as they would provide little-to-
no advance warning about how the AFR curve’s rises would
affect most disks.

PACEMAKER’s approach to handling step-deployments is
based on two properties: (1) Step-deployments have a large
number of disks deployed together, leading to a statistically
accurate AFR estimation; (2) AFR curves based on a large set
of disks tend to exhibit gradual, rather than sudden, AFR in-
creases as the disk ages (§3.2). PACEMAKER leverages these
two properties to employ a simple early warning methodol-
ogy to predict a forthcoming need to RUp transition a step
well in advance. Specifically, PACEMAKER sets a thresh-
old, termed threshold-AFR, which is a (configurable) frac-
tion of the tolerated-AFR of the current redundancy scheme
employed. For step-deployments, when the observed AFR
crosses the threshold-AFR, the proactive-transition-initiator
initiates a proactive RUp transition.

5.2 Rgroup-planner
The Rgroup-planner’s role is to determine which Rgroup

should disks transition to. This involves making two inter-



dependent choices: (1) the redundancy scheme to transition
into, (2) whether or not to create a new Rgroup.

Choice of the redundancy scheme. At a high level, the
Rgroup-planner first uses a set of selection criteria to arrive at
a set of viable schemes. It further narrows down the choices
by filtering out the schemes that are not worth transitioning to
when the transition IO and IO constraints are accounted for.

Selection criteria for viable schemes. Each viable redun-
dancy scheme has to satisfy the following criteria in addition
to the reliability constraint: each scheme (1) must satisfy the
minimum number of simultaneous failures per stripe (i.e.,
n− k); (2) must not exceed the maximum allowed stripe di-
mension (k); (3) must have its expected failure reconstruction
IO (AFR× k× disk-capacity) be no higher than was assumed
possible for Rgroup0 (since disks in Rgroup0 are expected
to have the highest AFR); (4) must have a recovery time in
case of failure (MTTR) that does not exceed the maximum
MTTR (set by the administrator when selecting the default
redundancy scheme for Rgroup0).

Determining if a scheme is worth transitioning to. Whether
the IO cost of transitioning to a scheme is worth it or not
and what space-savings can be achieved by that transition is
a function of the number of days disks will remain in that
scheme (also known as disk-days). This, in turn, depends on
(1) when the disks enter the new scheme, and (2) how soon
disks will require another transition out of that scheme.

The time it takes for the disks to enter the new scheme is
determined by the transition IO and the rate-limit. When the
disks will transition out of the target Rgroup is dependent
on the future and can only be estimated. For this estimation,
the Rgroup-planner needs to estimate the number of days
the AFR curve will remain below the threshold that forces
a transition out. This needs different strategies for the two
deployment patterns (trickle and step).

Recall that PACEMAKER knows the AFR curve for trickle-
deployed disks (from the canaries) in advance. Recall that
step-deployed disks have the property that the AFR curve
learned from them is statistically robust and tends to exhibit
gradual, as opposed to sudden AFR increases. The Rgroup-
planner leverages these properties to estimate the future AFR
behavior based on the recent past. Specifically, it takes the
slope of the AFR curve in the recent past4 and uses that to
project the AFR curve rise in the future.

The number of disk-days in a scheme for it to be worth
transitioning to is dictated by the IO constraints. For example,
let us consider a disk running under PACEMAKER that requires
a transition, and PACEMAKER is configured with an average-
IO constraint of 1% and a peak-IO-cap of 5%. Suppose the
disk requires 1 day to complete its transition at 100% IO
bandwidth. With the current settings, PACEMAKER will only
consider an Rgroup worthy of transitioning to (assuming it is

4PACEMAKER uses a 60 day (configurable) sliding window with an
Epanechnikov kernel, which gives more weight to AFR changes in the recent
past [21].

allowed to use all 5% of its IO bandwidth) if at least 80 disk-
days are spent after the disk entirely transitions to it (since
transitioning to it would take up to 20 days at the allowed 5%
IO bandwidth).

From among the viable schemes that are worth transitioning
to based on the IO constraints, the Rgroup-planner chooses
the one that provides the highest space-savings.

Decision on Rgroup creation. Rgroups cannot be created
arbitrarily. This is because every Rgroup adds placement
restrictions, since all chunks of a stripe have to be stored
on disks belonging to the same Rgroup. Therefore, Rgroup-
planner creates a new Rgroup only when (1) the resulting
placement pool created by the new Rgroup is large enough
to overcome traditional placement restrictions such as “no
two chunks on the same rack5”, and (2) the space-savings
achievable by the chosen redundancy scheme is sufficiently
greater than using an existing (less-space-efficient) Rgroup.

The disk deployment pattern also affects Rgroup forma-
tion. While the rules for whether to form an Rgroup remain
the same for trickle and step-deployed disks, mixing disks
deployed differently impacts the transitioning techniques
that can be used for eventually transitioning disks out of
that Rgroup. This in turn affects how the IO constraints
are enforced. Specifically, for trickle deployments, creating
an Rgroup for each set of transitioning disks would lead to
too many small-sized Rgroups. So, for trickle-deployments,
the Rgroup-planner creates a new Rgroup for a redundancy
scheme if and only if one does not exist already. Creating
Rgroups this way will also ensure that enough disks (thou-
sands) will go into it to satisfy placement restrictions. Mixing
disks from different trickle-deployments in the same Rgroup
does not impact the IO constraints, because PACEMAKER op-
timizes the transition mechanism for few disks transitioning
at a time, as is explained in §5.3. For step-deployments, due
to the large fraction of disks that undergo transition together,
having disks from multiple steps, or mixing trickle-deployed
disks within the same Rgroup, creates adverse interactions
(discussed in §5.3). Hence, the Rgroup-planner creates a new
Rgroup for each step-deployment, even if there already exists
one or more Rgroups that employ the chosen scheme. Each
such Rgroup will contain many thousands of disks to over-
come traditional placement restrictions. Per-step Rgroups
also extend to the Rgroup with default redundancy schemes,
implying a per-step Rgroup0. Despite having clusters with
disk populations as high as 450K disks, PACEMAKER’s re-
strained Rgroup creation led to no cluster ever having more
than 10 Rgroups.

Rules for purging an Rgroup. An Rgroup may be purged
for having too few disks. This can happen when too many
of its constituent disks transition to other Rgroups, or they
fail, or they are decommissioned leading to difficulty in ful-
filling placement restrictions. If the Rgroup to be purged is

5Inter-cluster fault tolerance remains orthogonal to and unaffected by
PACEMAKER.



made up of trickle-deployed disks, the Rgroup-planner will
choose to RUp transition disks to an existing Rgroup with
higher redundancy while meeting the IO constraints. For
step-deployments, purging implies RUp transitioning disks
into the more-failure-tolerant RGroup (RGroup0) that may
include trickle-deployed disks.

5.3 Transition-executor
The transition-executor’s role is to determine how to transi-

tion the disks. This involves choosing (1) the most IO-efficient
technique to execute that transition, and (2) how to rate-limit
the transition at hand. Once the transition technique is cho-
sen, the transition-executor executes the transition via the
rate-limiter as shown in Fig. 3.

Selecting the transition technique. Suppose the data
needs to be conventionally re-encoded from a kcur-of-ncur
scheme to a knew-of-nnew scheme. The IO cost of conven-
tional re-encoding involves reading–re-encoding–writing all
the stripes whose chunks reside on each transitioning disk.
This amounts to a read IO of kcur×disk-capacity (assuming
almost-full disks), and a write IO of kcur×disk-capacity× nnew

knew
for a total IO > 2× kcur×disk-capacity for each disk.

In addition to conventional re-encoding, PACEMAKER sup-
ports two new approaches to changing the redundancy scheme
for disks and selects the most efficient option for any given
transition. The best option depends on the fraction of the
Rgroup being transitioned at once.

Type 1 (Transition by emptying disks). If a small percentage
of an Rgroup’s disks are being transitioned, it is more efficient
to retain the contents of the transitioning disks in that Rgroup
rather than re-encoding. Under this technique, the data stored
on transitioning disks are simply moved (copied) to other
disks within the current Rgroup. This involves reading and
writing (elsewhere) the contents of the transitioning disks.
Thus, the IO of transitioning via Type 1 is at most 2×disk-
capacity, independent of scheme parameters, and therefore at
least kcur× cheaper than conventional re-encoding.

Type 1 can be employed whenever there is sufficient free
space available to move the contents of the transitioning disks
into other disks in the current Rgroup. Once the transitioning
disks are empty, they can be removed from the current Rgroup
and added to the new Rgroup as “new” (empty) disks.

Type 2 (Bulk transition by recalculating parities). If a large
fraction of disks in an Rgroup need to transition together, it
is more efficient to transition the entire Rgroup rather than
only the disks that need a transition at that time. Most cluster
storage systems use systematic codes6 [8, 13, 14, 36], wherein
transitioning an entire Rgroup involves only calculating and
storing new parities and deleting the old parities. Specifi-
cally, the data chunks have to be only read for computing
the new parities, but they do not have to be re-written. In
contrast, if only a part of the disks are transitioned, some

6In systematic codes, the data chunks are stored in unencoded form. This
helps to avoid having to decode for normal (i.e., non-degraded-mode) reads.

fraction of the data chunks also need to be re-written. Thus,
the IO cost for transitioning via Type 2 involves a read IO of
kcur
ncur
×disk-capacity, and a write IO of only the new parities,

which amounts to a total IO of nnew−knew
knew

× kcur
ncur
×disk-capacity

for each disk in the Rgroup. This is at most 2× kcur
ncur
×disk-

capacity, which makes it at least ncur× cheaper than conven-
tional re-encoding.

Selecting the most efficient approach for a transition. For
any given transition, the transition-executor selects the most
IO-efficient of all the viable approaches. Almost always,
trickle-deployed disks use Type 1 because they transition a-
few-at-a-time, and step-deployed disks use Type 2 because
Rgroup-planner maintains each step in a separate Rgroup.

Choosing how to rate limit a transition. Irrespective of
the transitioning techniques, the transition-executor has to
resolve the competing concerns of maximizing space-savings
and minimizing risk of data loss via fast transitions, and mini-
mizing foreground work interference by slowing down transi-
tions so as to not overwhelm the foreground IO. Arbitrarily
slowing down a transition to minimize interference is only
possible when the transition is not in response to a rise in
AFR. This is because a rising AFR hints at the data being
under-protected if not transitioned to a higher redundancy
soon. In PACEMAKER, a transition without an AFR rise oc-
curs either when disks are being RDn transitioned at the end
of infancy, or when they are being RUp transitioned because
the Rgroup they belong to is being purged. For all the other
RUp transitions, PACEMAKER carefully chooses how to rate
limit the transition.

Determining how much bandwidth to allow for a given
transition could be difficult, given that other transitions may
be in-progress already or may be initiated at any time (we do
observe concurrent transitions in our evaluations). So, to en-
sure that the aggregate IO of all ongoing transitions conforms
to the peak-IO-cap cluster-wide, PACEMAKER limits each
transition to the peak-IO-cap within its Rgroup. For trickle-
deployed disks, which share Rgroups, the rate of transition
initiations is consistently a small percentage of the shared
Rgroup, allowing disk emptying to proceed at well below the
peak-IO-cap. For step-deployed disks, this is easy for PACE-
MAKER, since a step only makes one transition at a time and
its IO is fully contained in its separate Rgroup. The transition-
executor’s approach to managing peak-IO on a per-Rgroup
basis is also why the proactive-transition-initiator can safely
assume a rate-limit of the peak-IO-cap without consulting the
transition-executor. If there is a sudden AFR increase that
puts data at risk, PACEMAKER is designed to ignore its IO
constraints to continue meeting the reliability constraint—this
safety valve was never needed for any cluster evaluated.

After finalizing the transitioning technique, the transition-
executor performs the necessary IO for transitioning disks
(read, writes, parity recalculation, etc.). We find that the
components required for the transition-executor are already



Figure 4: PACEMAKER-enhanced HDFS architecture.

present and adequately modular in existing distributed storage
systems. In §6, we show how we implement PACEMAKER in
HDFS with minimal effort.

Note that this design is for the common case where storage
clusters are designed for a single dedicated storage service.
Multiple distinct distributed storage services independently
using the same underlying devices would need to coordinate
their use of bandwidth (for their non-transition related load as
well) in some way, which is outside the scope of this paper.

6 Implementation of PACEMAKER in HDFS
We have implemented a prototype of PACEMAKER for

the Hadoop distributed file system (HDFS) [56]. HDFS is
a popular open source distributed file system, widely em-
ployed in the industry for storing large volumes of data.
We use HDFS v3.2.0, which natively supports erasure cod-
ing. Prototype of HDFS with Pacemaker is open-sourced
and is available at https://github.com/thesys-lab/
pacemaker-hdfs.git.

Background on HDFS architecture. HDFS has a central
metadata server called Namenode (NN, akin to the master
node) and a collection of servers containing the data stored in
the file system, called Datanodes (DN, akin to worker nodes).
Clients interact with the NN only to perform operations on file
metadata (containing a collection of the DNs that store the file
data). Clients directly request the data from the DNs. Each
DN stores data on its local drives using a local file system.

Realizing Rgroups in HDFS. This design makes a simpli-
fying assumption that all disks belonging to a DN are of the
same Dgroup and are deployed together (this could be relaxed
easily). Under this simplifying assumption, conceptually, an
Rgroup would consist of a set of DNs that need to be managed
independent of other such sets of DNs as shown in Fig 4.

The NN maintains a DatanodeManager (DNMgr), which is
a gateway for the NN to interact with the DNs. The DNMgr
maintains a list of the DNs, along with their usage statistics.
The DNMgr also contains a HeartBeatManager (HrtBtMgr)
which handles the periodic keepalive heartbeats from DNs. A
natural mechanism to realize Rgroups in HDFS is to have one
DNMgr per Rgroup. Note that the sets of DNs belonging to
the different DNMgrs are mutually exclusive. Implementing
Rgroups with multiple DNMgrs has several advantages.

Right level of control and view of the system. Since the
DNMgr resides below the block layer, when the data needs to

be moved for redundancy adaptations, the logical view of the
file remains unaffected. Only the mapping from HDFS blocks
to DNs gets updated in the inode. The statistics maintained
by the DNMgr can be used to balance load across Rgroups.

Minimizing changes to the HDFS architecture and maximiz-
ing re-purposing of existing HDFS mechanisms. This design
obviates the need to change HDFS’s block placement policy,
since it is implemented at the DNMgr level. Block place-
ment policies are notoriously hard to get right. Moreover,
block placement decisions are affected by fault domains and
network topologies, both of which are orthogonal to PACE-
MAKER’s goals, and thus best left untouched. Likewise, the
code for reconstruction of data from a failed DN need not be
touched, since all of the reads (to reconstruct each lost chunk)
and writes (to store it somewhere else) will occur within the
set of nodes managed by its DNMgr. Existing mechanisms
for adding / decommissioning nodes managed by the DN-
Mgr can be re-purposed to implement PACEMAKER’s Type 1
transitions (described below).

Cost of maintaining multiple DNMgrs is small. Each DN-
Mgr maintains two threads: a HrtBtMgr and a DNAdminMgr.
The former tracks and handles heartbeats from each DN, and
the latter monitors the DNs for performing decommissioning
and maintenance. The number of DNMgr threads in the NN
will increase from two to 2× the number of Rgroups. Fortu-
nately, even for large clusters, we observe that the number
of Rgroups would not exceed the low tens (§7.4). The NN
is usually a high-end server compared to the DNs, and an
additional tens of threads shouldn’t affect performance.

Rgroup transitions in HDFS. An important part of PACE-
MAKER functionality is transitioning DNs between Rgroups.
Recall from §5.3 that one of PACEMAKER’s preferred way of
transitioning disks across Rgroups is by emptying the disks.
In HDFS, the planned removal of a DN from a HDFS cluster
is called decommissioning. PACEMAKER re-uses decommis-
sioning to remove a DN from the set of DNs managed by
one DNMgr and then adds it to the set managed by another,
effectively transitioning a DN from one Rgroup to another.

PACEMAKER does not change the file manipulation API
or client access paths. But, there is one corner-case related
to transitions when file reads can be affected internally. To
read a file, a client queries the NN for the inode and caches it.
Subsequently, the reads are performed directly from the client
to the DN. If the DN transitions to another Rgroup while the
file is still being read, the HDFS client may find that that DN
no longer has the requested data. But, because this design uses
existing HDFS decommissioning for transitions, the client
software knows to react by re-requesting the updated inode
from the NN and resuming the read.

7 Evaluation
PACEMAKER-enabled disk-adaptive redundancy using is

evaluated on production logs from four large-scale real-world
storage clusters, each with hundreds of thousands of disks.

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git


G-1eA
G-2eA

G-2eB

G-1eB
G-3eC
G-6eB

(a) Redundancy management IO due to PACEMAKER over its 2.5+ year lifetime broken down by IO type. This identical to
Fig. 1b with the left Y axis only going to 20% to show the detailed IO activity happening in the cluster.

G-1eA G-1eB

(b) G-1 (step) AFR curve

G-1eA
G-2eA

G-2eB

G-1eB
G-3eC
G-6eB

Space-savings

6-of-9

30-of-33

6-of-9

10-of-13

11-of-14

(c) Space-savings due to PACEMAKER. Each colored region represents the fraction of cluster capacity that is using a
particular redundancy scheme. 6-of-9 is the default redundancy scheme (Rgroup0’s).

G-2eA G-2eB

(d) G-2 (trickle) AFR curve

Figure 5: Detailed IO analysis and space savings achieved by PACEMAKER-enabled adaptive redundancy on Google Cluster1.

We also experiment with a proof-of-concept HDFS implemen-
tation on a smaller sized cluster. This evaluation has four
primary takeaways: (1) PACEMAKER eliminates transition
overload, never using more than 5% of cluster IO bandwidth
(0.2–0.4% on average) and always meets target MTTDL, in
stark contrast to prior work approaches that do not account
for transition IO load; (2) PACEMAKER provides more than
97% of idealized-potential space-savings, despite being proac-
tive, reducing disk capacity needed by 14–20% compared to
one-size-fits-all; (3) PACEMAKER’s behavior is not overly
sensitive across a range of values for its configurable param-
eters; (4) PACEMAKER copes well with the real-world AFR
characteristics explained in §3.2. For example, it success-
fully combines the “multiple useful life phases” observation
with efficient transitioning schemes. This evaluation also
shows PACEMAKER in action by measuring disk-adaptive
redundancy in PACEMAKER-enhanced HDFS.

Evaluation methodology. PACEMAKER is simulated
chronologically for each of the four cluster logs described
in §3: three clusters from Google and one from Backblaze.
For each simulated date, the simulator changes the cluster
composition according to the disk additions, failures and de-
commissioning events in the log. PACEMAKER is provided
the log information, as though it were being captured live in
the cluster. IO bandwidth needed for each day’s redundancy
management is computed as the sum of IO for failure recon-
struction and transition IO requested by PACEMAKER, and is
reported as a fraction of the configured cluster IO bandwidth
(100MB/sec per disk, by default).

PACEMAKER was configured to use a peak-IO-cap of 5%,
an average-IO constraint of 1% and a threshold-AFR of 75%
of the tolerated-AFR, except for the sensitivity studies in
§7.3. For comparison, we also simulate (1) an idealized
disk-adaptive redundancy system in which transitions are in-

stantaneous (requiring no IO) and (2) the prior state-of-the-art
approach (HeART) for disk-adaptive redundancy. For all
cases, Rgroup0 uses 6-of-9, representing a one-size-fits-all
scheme reported in prior literature [13]. The required target
MTTDL is then back-calculated using the 6-of-9 default and
an assumed tolerated-AFR of 16% for Rgroup0. These config-
uration defaults were set by consulting storage administrators
of clusters we evaluated.

7.1 PACEMAKER on Google Cluster1 in-depth
Fig. 5a shows the IO generated by PACEMAKER (and disk

count) over the ≈3-year lifetime of Google Cluster1. Over
time, the cluster grew to over 350K disks comprising of disks
from 7 makes/models (Dgroups) via a mix of trickle and step
deployments. Fig. 5b and Fig. 5d show AFR curves of 2 of
the 7 Dgroups (obfuscated as G-1 and G-2 for confidentiality)
along with how PACEMAKER adapted to them at each age.
G-1 disks are trickle-deployed whereas G-2 disks are step-
deployed. The other 5 Dgroups are omitted due to lack of
space. Fig. 5c shows the corresponding space-savings (the
white space above the colors).

All disks enter the cluster as unspecialized disks, i.e.
Rgroup0 (dark gray region in the Fig. 5a and left gray re-
gion of Figs. 5b and 5d). Once a Dgroup’s AFR reduces
sufficiently, PACEMAKER RDn transitions them to a special-
ized Rgroup (light gray area in Fig. 5a). Over their lifetime,
disks may transition through multiple RUp transitions over
the multiple useful life phases. Each transition requires IO,
which is captured in blue in Fig. 5a. For example, the sud-
den drop in the unspecialized disks, and the blue area around
2018-04 captures the Type 2 transitions caused when over
100K disks RDn transition from Rgroup0 to a specialized
Rgroup. The light gray region in Fig. 5a corresponds to the
time over which space-savings are obtained, which can be
seen in Fig. 5c.



30-of-33

6-of-9 6-of-9

10-of-13

HeART

Pacemaker

Space-savings

C
ap

ac
ity

(%
)

IO
 / 

da
y 

(%
)

IO
 / 

da
y 

(%
)

N
um

 d
is

ks
N

um
 d

is
ks

(a) Google Cluster2

HeART

6-of-9

Pacemaker

30-of-33

IO
 / 

da
y 

(%
)

15-of-18

C
ap
ac
ity
(%
)

6-of-9

10-of-13Space-savings

IO
 / 

da
y 

(%
)

N
um

 d
is

ks
N

um
 d

is
ks

(b) Google Cluster3

HeART

Pacemaker

Space-savings

C
ap

ac
ity

(%
)

IO
 / 

da
y 

(%
)

IO
 / 

da
y 

(%
)

30-of-33

6-of-9 6-of-9

13-of-16

27-of-30 15-of-18

N
um

 d
is

ks
N

um
 d

is
ks

(c) Backblaze

Figure 6: Top two rows show the IO overhead comparison between prior adaptive redundancy system (HeART) and PACEMAKER on two
Google clusters and one Backblaze cluster. PACEMAKER successfully bounds all IO under 5% (visible as tiny blue regions in middle graphs,
for e.g. around 2017 in (a)). The bottom row shows the 14–20% average space-savings achieved by PACEMAKER across the three clusters.

Many transitions with no transition overload. PACE-
MAKER successfully bounds all redundancy management IO
comfortably under the configured peak-IO-cap throughout the
cluster’s lifetime. This can be seen via an imaginary horizon-
tal line at 5% (the configured peak-IO-cap) that none of the
blue regions goes above. Recall that PACEMAKER rate-limits
the IO within each Rgroup to ensure simultaneous transitions
do not violate the cluster’s IO cap. Events G-1eA and G-2eA
are examples of events where both G-1 and G-2 disks (making
up almost 100% of the cluster at that time) request transitions
at the same time. Despite that, the IO remains bounded below
5%. G-3eC and G-6eB also show huge disk populations of
G-3 and G-6 Dgroups (AFRs not shown) requesting almost
simultaneous RUp transitions, but PACEMAKER’s design en-
sures that the peak-IO constraint is never violated. This is
in sharp contrast with HeART’s frequent transition overload,
shown in Fig. 1a.

Disks experience multiple useful life phases. G-1, G-3,
G-6 and G-7 disks experience two phases of useful life each.
In Fig. 5a, events G-1eA and G-1eB mark the two transitions
of G-1 disks through its multiple useful lives as shown in
Fig. 5b. In the absence of multiple useful life phases, PACE-
MAKER would have RUp transitioned G-1 disks to Rgroup0
in 2019-05, eliminating space-savings for the remainder of
their time in the cluster. §7.3 quantifies the benefit of multiple
useful life phases for all four clusters.

MTTDL always at or above target. Along with the AFR
curves, Figs. 5b and 5d also show the upper bound on the AFR
for which the reliability constraint is met (top of the gray re-
gion). PACEMAKER sufficiently protects all disks throughout
their life for all Dgroups across evaluated clusters.

Substantial space-savings. PACEMAKER provides 14%
average space-savings (Fig. 5c) over the cluster lifetime to
date. Except for 2017-01 to 2017-05 and 2017-11 to 2018-03,
which correspond to infancy periods for large batches of new
empty disks added to the cluster, the entire cluster achieves
≈20% space-savings. Note that the apparent reduction in
space-savings from 2017-11 to 2018-03 isn’t actually reduced
space in absolute terms. Since Fig. 5c shows relative space-
savings, the over 100K disks deployed around 2017-11, and

their infancy period makes the space-savings appear reduced
relative to the size of the cluster.

7.2 PACEMAKER on the other three clusters
Fig. 6 compares the transition IO incurred by PACEMAKER

to that for HeART [27] for Google Cluster2, Google Cluster3
and Backblaze, along with the corresponding space-savings
achieved by PACEMAKER. While clusters using HeART
would suffer transition overload, the same clusters under
PACEMAKER always had all their transition IO under the peak-
IO-cap of 5%. In fact, on average, only 0.21–0.32% percent
of the cluster IO bandwidth was used for transitions. The
average space-savings for the three clusters are 14–20%.

Google Cluster2. Fig. 6a shows the transition overload
and space-savings in Google Cluster2 and the corresponding
space-savings. All Dgroups in Google Cluster2 are step-
deployed. Thus, it is not surprising that Fig. 7c shows that
over 98% of the transitions in Cluster2 were Type 2 transitions
(bulk parity recalculation). Cluster2’s disk population exceeds
450K disks. Even at such large scales, PACEMAKER obtains
average space-savings of almost 17% and peak space-savings
of over 25%. This translates to needing 100K fewer disks.

Google Cluster3. Google Cluster3 (Fig. 6b) is not as large
as Cluster1 or Cluster2. At its peak, Cluster3 has a disk pop-
ulation of approximately 200K disks. But, it achieves the
highest average space-savings (20%) among clusters evalu-
ated. Like Cluster2, Cluster3 is also mostly step-deployed.

Backblaze Cluster. Backblaze (Fig. 6c) is a completely
trickle-deployed cluster. The dark grey region across the
bottom of Fig. 6c’s PACEMAKER plot shows the persistent
presence of canary disks throughout the cluster’s lifetime. Un-
like the Google clusters, the transition IO of Backblaze does
not produce bursts of transition IO that lasts for weeks. In-
stead, since trickle-deployed disks transition a-few-at-a-time,
we see transition work appearing continuously throughout
the cluster lifetime of over 6 years. The rise in the transition
IO spikes in 2019, for HeART, is because of large capac-
ity 12TB disks replacing 4TB disks. Unsurprisingly, under
PACEMAKER, most of the transitions are done using Type 1
(transitioning by emptying disks) as shown in Fig. 7c. The
average space-savings obtained on Backblaze are 14%.



1.5% 2.5% 3.5% 5% 7.5%
Pacemaker's peak-IO-cap

0

25

50

75

100

%
 o

pt
im

al
 sa

vi
ng

s

(G
oo

gl
e 

Cl
us

te
r1

)

(G
oo

gl
e 

Cl
us

te
r1

)

(G
oo

gl
e 

Cl
us

te
r1

)

97
.9

98
.4(G

oo
gl

e 
Cl

us
te

r2
)

(G
oo

gl
e 

Cl
us

te
r2

)

98
.6

98
.7

98
.7

97 98
.1

98
.4

98
.6

98
.8

97
.5

97
.6

97
.6

97
.6

97
.6

Google Cluster1 Google Cluster2 Google Cluster3 Backblaze

(a) PACEMAKER’s sensitivity to the peak-IO constraint.
GoogleC1

GoogleC2
GoogleC3

Backblaze
0.0

0.5

1.0

1.5

Op
tim

ize
d 

di
sk

-d
ay

s

1.
1x

1.
28

x

1.
33

x

1.
03

x

(b) Multiple useful life phases
GoogleC1

GoogleC2
GoogleC3

Backblaze
0

20

40

60

80

100

Tr
an

sit
io

n 
ty

pe
 sp

lit

Type 1 Type 2

(c) Transition type distribution

Figure 7: (a) shows PACEMAKER’s sensitivity to the peak IO bandwidth constraint. (b) shows the advantage of multiple useful life phases and
(c) shows the contribution of the two transitioning techniques when PACEMAKER was simulated on the four production clusters.

7.3 Sensitivity analyses and ablation studies
Sensitivity to IO constraints. The peak-IO constraint gov-

erns Fig. 7a, which shows the percentages of optimal space-
savings achieved with PACEMAKER for peak-IO-cap settings
between 1.5% and 7.5%. A peak-IO-cap of up to 7.5% is used
in order to compare with the IO percentage spent for existing
background IO activity, such as scrubbing. By scrubbing all
data once every 15 days [5], the scrubber uses around 7% IO
bandwidth, and is a background work IO level tolerated by
today’s clusters.

The Y-axis captures how close the space-savings are for
the different peak-IO-caps compared to “Optimal savings”,
i.e. an idealized system with infinitely fast transitions. PACE-
MAKER’s default peak-IO-cap (5%) achieves over 97% of
the optimal space-savings for each of the four clusters. For
peak-IO constraint set to <=2.5%, some RUp transitions in
Google Cluster1 and Cluster2 become too aggressively rate-
limited causing a subsequent AFR rise to violate the peak-IO
constraints. We indicate this as a failure, and show it as "∅".
The same situation happens for Google Cluster1 at 3.5%.

Sensitivity to threshold-AFR. The threshold-AFR deter-
mines when proactive RUp transitions of step-deployed disks
are initiated. Conceptually, the threshold-AFR governs how
risk-averse the admin wants to be. Lowering the threshold
would trigger an RUp transition when disks are farther away
from the tolerated-AFR (more risk-averse), and vice-versa.
We evaluated PACEMAKER for threshold-AFRs of 60%, 75%
and 90% of the respective Rgroups’ tolerated-AFRs. We
found that PACEMAKER’s space-savings is not very sensitive
to threshold-AFR, with space-savings only 2% lower at 60%
than at 90%. Data remained safe at each of these settings, but
would become unsafe with higher values.

Contribution of multiple useful life phases. Fig. 7b com-
pares the increased number of disk-days spent in specialized
Rgroups because of considering multiple useful life phases.
In the best case, Google Cluster2 spent 33% more disk-days
in specialized redundancy, increasing overall space-savings
from 16% to 19%. Note that in large-scale storage clusters,
even 1% space-savings are considered substantial as it repre-
sents thousands of disks.

Contribution of transition types. By proactively keeping
step-deployed disks in distinct Rgroups and using specialized
transitioning schemes whenever possible, instead of using

simple re-encoding for all transitions, PACEMAKER reduces
total transition IO by 92–96% for the four clusters. Fig. 7c
shows what percentage of transitions were done via Type 1
(disk emptying) vs. Type 2 (bulk parity recalculation). As
expected, Google clusters rely more on Type 2 transitions,
because most disks are step-deployed. In contrast, the Back-
blaze cluster is entirely trickle-deployed and hence mostly
uses Type 1 transitions. The small percentage of Type 2
transitions in Backblaze occur when Rgroups are purged.

7.4 Evaluating HDFS + PACEMAKER

This section describes basic experiments with the
PACEMAKER-enabled HDFS, focusing on its functioning and
operation. Note that PACEMAKER is designed for longitudinal
disk deployments over several years, a scenario that cannot
be reproduced identically in laboratory settings. Hence, these
HDFS experiments are aimed to display that integrating PACE-
MAKER with an existing storage system is straightforward,
rather than on the long-term aspects like overall space-savings
or transition IO behavior over cluster lifetime as evaluated via
simulation above.

The HDFS experiments run on a PRObE Emulab clus-
ter [16]. Each machine has a Dual-Core AMD Opteron Pro-
cessor, 16GB RAM, and Gigabit Ethernet. We use a 21-node
cluster running HDFS 3.2.0 with one NN and 20 DNs. Each
DN has a 10GB partition on a 10000 RPM HDD for a total
cluster size of 200GB. We statically define the cluster to
be made up of two Rgroups of ten DNs each, one using the
6-of-9 erasure coding scheme and the other using a 7-of-10
scheme. DFS-perf [19], a popular open-source HDFS bench-
mark is used, after populating the cluster to 60% full. Each
DFS-perf client sequentially reads one file over and over again
(size=768MB), for a total read size of about 1.75TB over 40
iterations. We use 60 DFS-perf clients, running on 20 nodes
separate from the HDFS cluster.

We focus on the behavior of a DN as it transitions between
Rgroups, compared with baseline HDFS performance (where
all DNs are healthy) and its behavior while recovering from a
failed DN. Fig. 8 shows the client throughput after the setup
phase, followed by a noticeable drop in client throughput
when a DN fails (emuated by stopping the DN). This is
caused by the reconstruction IO that recreates the data from
the failed node. Read latency exhibits similar behavior (not



0 200 400 600 800
Time (sec)

0

1000

2000

Th
ro

ug
hp

ut
 (M

B/
se

c)

St
op

 D
N

Failure
Baseline Failure

0 200 400 600 800
Time (sec)

Be
gi

n 
tra

ns
iti

on

En
d 

of
 tr

an
sit

io
n

Relaxed Rgroup Transition
Baseline Relaxed Rgroup Transition

Figure 8: DFS-perf reported throughput for baseline, with one DN
failure and one Rgroup transition.

shown due to space). Eventually, throughput settles at about
5% lower than prior to failure, since now there are 19 DNs.

Fig. 8 also shows client throughput when a node is RDn
transitioned from 6-of-9 to 7-of-10. There is minor interfer-
ence during the transition, which can be attributed to the data
movement that HDFS performs as a part of decommissioning.
The transition requires less work than failed node reconstruc-
tion, yet takes longer to complete because PACEMAKER limits
the transition IO. Eventually, even though 20 DNs are run-
ning, the throughput is lower by ≈5% (one DN’s throughput).
This happens because PACEMAKER empties the DN before it
moves into the new Rgroup, and load-balancing data to newly
added DNs happens over a longer time-frame. Experiments
with RUp transition showed similar results.

8 Related work
The closest related work [27] proposes a redundancy adap-

tation tool called HeART that categorizes disks into groups
and suggests a tailored redundancy scheme for each during its
useful life period. As discussed earlier, while [27] showcased
potential space-savings, it ignored transition overload and
hence is made impractical (Fig. 1a). PACEMAKER eliminates
transition overload by employing IO constraints (specifically
the peak-IO and average-IO constraints) that cap the transi-
tion IO to a tiny fraction cluster bandwidth. While HeART
was evaluated only for the trickle-deployed Backblaze cluster,
our evaluation of PACEMAKER for Google storage clusters
exposes the unique challenges of step-deployed clusters. Sev-
eral design elements were added to PACEMAKER to address
the challenges posed by step-deployed disks.

Various systems include support for multiple redundancy
schemes, allowing different schemes to be used for different
data [12, 14]. Tools have been created for deciding, on a per-
data basis, which scheme to use [59, 65]. Keeton et al. [28]
describe a tool that automatically provides disaster-resistant
solutions based on budget and failure models. PACEMAKER
differs from such systems by focusing on efficiently adapting
redundancy to different and time-varying AFRs of disks.

Reducing the impact of background IO, such as for data
scrubbing, on foreground IO is a common research theme. [1,
3, 30, 31, 38, 53]. PACEMAKER converts otherwise-urgent
bursts of transition IO into proactive background IO, which
could then benefit from these works.

Disk reliability has been well studied, including evidence
of failure rates being make/model dependent [5, 11, 22, 25,

32, 40, 41, 49–51, 55]. There are also studies that predict
disk failures [2, 20, 33, 37, 58, 61, 68], which can enhance any
storage fault-tolerance approach.

While several works have considered the problem of design-
ing erasure codes that allow transitions using less resources,
existing solutions are limited to specific kinds of transitions
and hence are not applicable in general. The case of adding
parity chunks while keeping the number of data chunks fixed
can be viewed [35, 45, 47] as the well-studied reconstruction
problem, and hence the codes designed for optimal recon-
struction (e.g., [10,18,39,46,47,60]) would lead to improved
resource usage for this case. Several works have studied the
case where the number of data nodes increases while the num-
ber of parity nodes remains fixed [23, 42, 64, 66, 69]. In [65],
the authors propose two erasure codes designed to undergo a
specific transition in parameters. In [34], the authors propose
a general theoretical framework for studying codes that enable
efficient transitions for general parameters, and derive lower
bounds on the cost of transitions as well as describe optimal
code constructions for certain specific parameters. However,
none of the existing code constructions are applicable for the
diverse set of transitions needed for disk-adaptive redundancy
in real-world storage clusters.

9 Conclusion
PACEMAKER orchestrates disk-adaptive redundancy with-

out transition overload, allowing use in real-world clusters.
By proactively arranging data layouts and initiating transi-
tions, PACEMAKER reduces total transition IO allowing it to
be rate-limited. Its design integrates cleanly into existing scal-
able storage implementations, such as HDFS. Analysis for 4
large real-world storage clusters from Google and Backblaze
show 14–20% average space-savings while transition IO is
kept small (<0.4% on average) and bounded (e.g., <5%).

10 Acknowledgements
We thank our shepherd Wyatt Lloyd and the anonymous

reviewers for their valuable feedback and suggestions. We ex-
tend special thanks to Larry Greenfield, Arif Merchant and nu-
merous other researchers, engineers at Google; Keith Smith,
Tim Emami, Jason Hennessey, Peter Macko and other re-
searchers from NetApp’s Advanced Technology Group (ATG)
who have been instrumental in providing data, feedback and
support. We also thank Jiaan Dai, Xuren Zhou, Jiaqi Zuo,
Sai Kiriti Badam and Jiongtao Ye for their help in building
the HDFS+PACEMAKER prototype. This research is gener-
ously supported in part by the NSF grants CNS 1956271 and
CNS 1901410. We also thank the members and companies of
the PDL Consortium (Alibaba, Amazon, Datrium, Facebook,
Google, HPE, Hitachi, IBM, Intel, Microsoft, NetApp, Ora-
cle, Pure Storage, Salesforce, Samsung, Seagate, Two Sigma,
Western Digital and VMware) for their interest, insights, feed-
back, and support.



References
[1] George Amvrosiadis, Angela Demke Brown, and

Ashvin Goel. Opportunistic storage maintenance.
In ACM Symposium on Operating Systems Principles
(SOSP), 2015.

[2] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav.
Large Scale Predictive Analytics for Hard Disk Remain-
ing Useful Life Estimation. In IEEE International
Congress on Big Data (BigData Congress), 2018.

[3] Eitan Bachmat and Jiri Schindler. Analysis of methods
for scheduling low priority disk drive tasks. In ACM
SIGMETRICS Performance Evaluation Review, 2002.

[4] Backblaze. Disk Reliability Dataset. https://www.
backblaze.com/b2/hard-drive-test-data.html,
2013-2019.

[5] Lakshmi N Bairavasundaram, Garth R Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis
of latent sector errors in disk drives. In ACM SIGMET-
RICS Performance Evaluation Review, 2007.

[6] Eric Brewer. Spinning Disks and Their Cloudy Future.
https://www.usenix.org/node/194391, 2018.

[7] Eric Brewer, Lawrence Ying, Lawrence Greenfield,
Robert Cypher, and Theodore T’so. Disks for data
centers. Technical report, Google, 2016.

[8] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.
Windows azure storage: a highly available cloud storage
service with strong consistency. In ACM Symposium on
Operating Systems Principles (SOSP), 2011.

[9] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen,
Emil Sit, Hakim Weatherspoon, M Frans Kaashoek,
John Kubiatowicz, and Robert Morris. Efficient Replica
Maintenance for Distributed Storage Systems. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2006.

[10] Alexandros G. Dimakis, Brighten Godfrey, Yunnan
Wu, Martin J. Wainwright, and Kannan Ramchandran.
Network coding for distributed storage systems. IEEE
Transactions on Information Theory, 2010.

[11] Jon Elerath. Hard-disk drives: The good, the bad, and
the ugly. Communication of ACM, 2009.

[12] Erasure code Ceph Documentation. https:
//docs.ceph.com/docs/master/rados/
operations/erasure-code/, (accessed Oct 15,
2020).

[13] Daniel Ford, François Labelle, Florentina I Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

[14] Apache Software Foundation. HDFS Erasure
Coding. https://hadoop.apache.org/docs/
r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html, (accessed Oct 15, 2020).

[15] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google
file system. In ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[16] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt
Lloyd. Probe: A thousand-node experimental cluster
for computer systems research. USENIX; login, 2013.

[17] Garth A Gibson. Redundant disk arrays: Reliable,
parallel secondary storage. The MIT Press, 1992.

[18] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and
Sergey Yekhanin. On the locality of codeword symbols.
IEEE Transactions on Information Theory, 2012.

[19] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez,
Zhao Zhang, Shuai Wang, Yihua Huang, Scott Shenker,
Ion Stoica, and Patrick PC Lee. DFS-PERF: A scalable
and unified benchmarking framework for distributed file
systems. UC Berkeley, Tech. Rep. UCB/EECS-2016-
133, 2016.

[20] Greg Hamerly and Charles Elkan. Bayesian approaches
to failure prediction for disk drives. In International
Conference on Machine Learning (ICML), 2001.

[21] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
Kernel smoothing methods. In The elements of statisti-
cal learning. Springer, 2009.

[22] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine,
Bill Kramer, and Franck Cappello. Modeling and toler-
ating heterogeneous failures in large parallel systems. In
ACM / IEEE High Performance Computing Networking,
Storage and Analysis (SC), 2011.

[23] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and
Pan Zhou. Generalized optimal storage scaling via
network coding. In IEEE International Symposium on
Information Theory, ISIT, 2018.

[24] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, Sergey
Yekhanin, et al. Erasure Coding in Windows Azure Stor-
age. In USENIX Annual Technical Conference (ATC),
2012.

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.usenix.org/node/194391
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html


[25] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor
for storage failures?: A comprehensive study of storage
subsystem failure characteristics. ACM Transactions on
Storage (TOS), 2008.

[26] Saurabh Kadekodi, Francisco Maturana, Suhas Ja-
yaram Subramanya, Jungcheng Yang, K. V. Rashmi,
and Gregory R. Ganger. PACEMAKER: Avoiding
HeART attacks in storage clusters with disk-adaptive
redundancy (expanded). In arXiv, 2020.

[27] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.
Cluster storage systems gotta have HeART: improving
storage efficiency by exploiting disk-reliability hetero-
geneity. In USENIX File and Storage Technologies
(FAST), 2019.

[28] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jef-
frey S Chase, John Wilkes, et al. Designing for disasters.
In USENIX File and Storage Technologies (FAST), 2004.

[29] Larry Lancaster and Alan Rowe. Measuring real-world
data availability. In USENIX LISA, 2001.

[30] Christopher R Lumb, Jiri Schindler, Gregory R Ganger,
et al. Freeblock scheduling outside of disk firmware. In
USENIX File and Storage Technologies (FAST), 2002.

[31] Christopher R Lumb, Jiri Schindler, Gregory R Ganger,
David F Nagle, and Erik Riedel. Towards higher disk
head utilization: extracting free bandwidth from busy
disk drives. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2000.

[32] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness,
Guanlin Lu, Darren Sawyer, Surendar Chandra, and
Windsor Hsu. RAIDShield: characterizing, monitoring,
and proactively protecting against disk failures. ACM
Transactions on Storage (TOS), 2015.

[33] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca
Schroeder. Proactive error prediction to improve stor-
age system reliability. In USENIX Annual Technical
Conference (ATC), 2017.

[34] Francisco Maturana and K. V. Rashmi. Convertible
codes: new class of codes for efficient conversion of
coded data in distributed storage. In 11th Innovations in
Theoretical Computer Science Conference, ITCS, 2020.

[35] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed
parity generation in MDS storage codes. In IEEE Inter-
national Symposium on Info. Theory, ISIT, 2018.

[36] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:

Facebook’s warm BLOB storage system. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2014.

[37] Joseph F Murray, Gordon F Hughes, and Kenneth
Kreutz-Delgado. Hard drive failure prediction using
non-parametric statistical methods. In Springer Artifi-
cial Neural Networks and Neural Information Process-
ing (ICANN/CONIP, 2003.

[38] Alina Oprea and Ari Juels. A Clean-Slate Look at Disk
Scrubbing. In USENIX File and Storage Technologies
(FAST), 2010.

[39] Dimitris S. Papailiopoulos and Alexandros G. Dimakis.
Locally repairable codes. IEEE Transactions on Infor-
mation Theory, 2014.

[40] David A Patterson, Garth Gibson, and Randy H Katz. A
case for redundant arrays of inexpensive disks (RAID).
In ACM International Conference on Management of
Data (SIGMOD), 1988.

[41] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz An-
dré Barroso. Failure Trends in a Large Disk Drive
Population. In USENIX File and Storage Technologies
(FAST), 2007.

[42] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini,
and Amit K. Jha. On adaptive distributed storage sys-
tems. In IEEE International Symposium on Information
Theory, ISIT, 2015.

[43] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A So-
lution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster. In USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage),
2013.

[44] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,
Dhruba Borthakur, and Kannan Ramchandran. A hitch-
hiker’s guide to fast and efficient data reconstruction
in erasure-coded data centers. ACM Special Interest
Group on Data Communication (SIGCOMM), 2014.

[45] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. En-
abling node repair in any erasure code for distributed
storage. In IEEE International Symposium on Informa-
tion Theory Proceedings, ISIT, 2011.

[46] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Op-
timal exact-regenerating codes for distributed storage
at the MSR and MBR points via a product-matrix con-
struction. IEEE Trans. on Information Theory, 2011.



[47] KV Rashmi, Nihar B Shah, and Kannan Ramchan-
dran. A piggybacking design framework for read-and
download-efficient distributed storage codes. IEEE
Transactions on Information Theory, 2017.

[48] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-
itris Papailiopoulos, Alexandros G Dimakis, Ramkumar
Vadali, Scott Chen, and Dhruba Borthakur. Xoring
elephants: Novel erasure codes for big data. In Interna-
tional Conference on Very Large Data Bases, 2013.

[49] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding latent sector errors and how to protect
against them. ACM Trans. on Storage (TOS), 2010.

[50] Bianca Schroeder and Garth A Gibson. Disk failures in
the real world: What does an MTTF of 1,000,000 hours
mean to you? In USENIX File and Storage Technologies
(FAST), 2007.

[51] Bianca Schroeder and Garth A Gibson. Understanding
failures in petascale computers. In Journal of Physics:
Conference Series. IOP Publishing, 2007.

[52] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In USENIX File and Storage Technologies
(FAST), 2016.

[53] Thomas JE Schwarz, Qin Xin, Ethan L Miller, Dar-
rell DE Long, Andy Hospodor, and Spencer Ng. Disk
scrubbing in large archival storage systems. In IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Sys-
tems (MASCOTS), 2004.

[54] Seagate. The Digitization of the World From
Edge to Core. https://www.seagate.com/
files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf, 2018.

[55] Sandeep Shah and Jon G Elerath. Disk drive vintage
and its effect on reliability. In IEEE Reliability and
Maintenance Symposium (RAMS), 2004.

[56] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
Robert Chansler, et al. The hadoop distributed file
system. In IEEE/NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST), 2010.

[57] Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon
Chun, Hakim Weatherspoon, Robert Tappan Morris,
M Frans Kaashoek, and John Kubiatowicz. Proactive
Replication for Data Durability. In USENIX Int. Work-
shop on Peer-to-Peer Systems (IPTPS), 2006.

[58] Brian D Strom, SungChang Lee, George W Tyndall,
and Andrei Khurshudov. Hard disk drive reliability

modeling and failure prediction. IEEE Transactions on
Magnetics, 2007.

[59] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie,
Dushyanth Narayanan, and Gregory R Ganger. In-
formed data distribution selection in a self-predicting
storage system. In IEEE International Conference on
Autonomic Computing (ICAC), 2006.

[60] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik,
Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P Vijay
Kumar, Alexandar Barg, Min Ye, Srinivasan Narayana-
murthy, et al. Clay codes: Moulding {MDS} codes to
yield an {MSR} code. In USENIX File and Storage
Technologies (FAST), 2018.

[61] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-
Leung Tsui. A two-step parametric method for failure
prediction in hard disk drives. IEEE Trans. on industrial
informatics, 2014.

[62] Hakim Weatherspoon and John D Kubiatowicz. Era-
sure coding vs. replication: A quantitative compari-
son. In International Workshop on Peer-to-Peer Systems.
Springer, 2002.

[63] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[64] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-
efficient scaling schemes for distributed storage systems
with CRS codes. IEEE Transactions on Parallel and
Distributed Systems, 2016.

[65] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A. Pease. A tale of two erasure codes in HDFS.
In USENIX File and Storage Technologies (FAST), 2015.

[66] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and
Pan Zhou. Toward optimal storage scaling via network
coding: from theory to practice. In IEEE Conference
on Computer Communications, INFOCOM, 2018.

[67] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno
Thereska, and Dushyanth Narayanan. Does erasure
coding have a role to play in my data center. Microsoft
research MSR-TR-2010, 52, 2010.

[68] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.
Predicting disk failures with HMM-and HSMM-based
approaches. In Springer Industrial Conference on Data
Mining (ICDM), 2010.

[69] Weimin Zheng and Guangyan Zhang. Fastscale: accel-
erate RAID scaling by minimizing data migration. In
USENIX File and Storage Technologies (FAST), 2011.

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

	Introduction
	Whither disk-adaptive redundancy
	Longitudinal production trace analyses
	Causes of transition overload
	Informing a solution

	Design goals
	Design of pacemaker
	Proactive-transition-initiator
	 Deciding when to RDn a disk 
	Deciding when to RUp a disk

	Rgroup-planner
	Transition-executor

	Implementation of pacemaker in HDFS
	Evaluation
	pacemaker on Google Cluster1 in-depth
	pacemaker on the other three clusters
	Sensitivity analyses and ablation studies
	Evaluating HDFS + pacemaker

	Related work
	Conclusion
	Acknowledgements

