
FIFO can be Better than LRU:
the Power of Lazy Promotion andQuick Demotion

Juncheng Yang

Carnegie Mellon University

Ziyue Qiu

Carnegie Mellon University

Yazhuo Zhang

Emory University

Yao Yue
∗

Pelikan Foundation

K. V. Rashmi

Carnegie Mellon University

Abstract

LRU has been the basis of cache eviction algorithms for

decades, with a plethora of innovations on improving LRU’s

miss ratio and throughput. While it is well-known that FIFO-

based eviction algorithms provide significantly better through-

put and scalability, they lag behind LRU on miss ratio, thus,

cache efficiency.

We performed a large-scale simulation study using 5307

block and web cache workloads collected in the past two

decades. We find that contrary to what common wisdom sug-

gests, some FIFO-based algorithms, such as FIFO-Reinsertion

(or CLOCK), are, in fact, more efficient (have a lower miss

ratio) than LRU. Moreover, we find that qick demotion

— evicting most new objects very quickly — is critical for

cache efficiency. We show that when enhanced by qick

demotion, not only can state-of-the-art algorithms be more

efficient, a simple FIFO-based algorithm can outperform five

complex state-of-the-art in terms of miss ratio.

ACM Reference Format:

Juncheng Yang, ZiyueQiu, Yazhuo Zhang, Yao Yue, and K. V. Rashmi.

2023. FIFO can be Better than LRU: the Power of Lazy Promotion and

Quick Demotion. InWorkshop on Hot Topics in Operating Systems
(HotOS ’23), June 22–24, 2023, Providence, RI, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3593856.3595887

1 Introduction

Caching is a well-known and widely deployed technique

to speedup data accesses [9, 17, 23, 25, 32, 36, 39, 43, 44, 46, 53,

63, 66, 79, 80, 85], reduce repeated computation [40, 50, 64,

82] and data transfer [16, 18, 21, 41, 52, 57, 69–71, 81, 86, 89].

∗
work done in part at Twitter.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HotOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0195-5/23/06.

https://doi.org/10.1145/3593856.3595887

A core component of a cache is the eviction algorithm, which

chooses the objects stored in the limited cache space. Two

metrics describe the performance of an eviction algorithm:

efficiency measured by the miss ratio and throughput mea-

sured by the number of requests served per second.

The study of cache eviction algorithms has a long his-

tory [14, 24, 26, 68], with a majority of the work centered

around LRU (that is to evict the least-recently-used object).

LRU maintains a doubly-linked list, promoting objects to the

head of the list upon cache hits and evicting the object at

the tail of the list when needed. Belady and others found

that memory access patterns often exhibit temporal local-

ity — “the most recently used pages were most likely to be

reused in the immediate future”. Thus, LRU using recency to

promote objects was found to be better than FIFO [14, 27].

Most eviction algorithms designed to achieve high effi-

ciency start from LRU. For example, many algorithms such

as ARC [56], SLRU [6, 48], 2Q [7, 30, 47, 48], MQ [92] and

multi-generational LRU [5], use multiple LRU queues to sep-

arate hot and cold objects. Some algorithms, e.g., LIRS [45]

and LIRS2 [90], maintain an LRU queue but use different

metrics to promote objects. While other algorithms, e.g.,

LRFU [29], EE-LRU [67], LeCaR [72] and CACHEUS [65],

augment LRU’s recency with different metrics. In addition,

many recent works, e.g., Talus [13], improve LRU’s ability

to handle scan and loop requests.

Besides efficiency, there have been fruitful studies on en-

hancing the cache’s throughput performance and thread

scalability. Each cache hit in LRU promotes an object to the

head of the queue, which requires updating at least six point-

ers guarded by locks. These overheads are not acceptable

in many deployments that need high performance [10, 37,

62, 78]. Thus, performance-centric systems often use FIFO-

based algorithms to avoid LRU’s overheads. For example,

FIFO-Reinsertion and variants of CLOCK [24, 60, 68] have

been developed, which serve as LRU approximations. It is

often perceived that these algorithms trade miss ratio for

better throughput and scalability [11, 38, 43, 47, 60].

Via a large-scale simulation study, we make a case for

breaking away from LRU completely and instead design-

ing eviction algorithms based on FIFO. To the best of our

https://doi.org/10.1145/3593856.3595887
https://doi.org/10.1145/3593856.3595887

knowledge, this is by far the most comprehensive eviction al-

gorithm study. Compared to previous work [65], our datasets

have 16× more traces with 58,100× more requests. And the

datasets are more diverse, containing traces of block, key-

value, and object caches collected over two decades.

FIFO provides many benefits compared to LRU, including

fewer metadata, less computation, better scalability [37, 83]

and flash friendliness [22, 55, 75, 84]. However, FIFO alone

often leaves a large efficiency headroom. To bridge the gap,

we introduce two broad classes of techniques — Lazy Pro-

motion and Quick Demotion.

Lazy Promotion (LP) performs promotion only at the

eviction time. An example of this technique is “reinsertion”,

which puts the eviction candidate back into the cache if

requested since the last insertion. Common wisdom suggests

that FIFO with Lazy Promotion is an LRU approximation

that is less efficient than LRU [11, 38, 43, 47, 60]. However,

our large-scale empirical study on 5307 traces shows that such
“weak LRUs” are more efficient than LRU (§3).

Quick Demotion (QD) removes most objects quickly af-

ter they are inserted. We show that the opportunity cost of

waiting for new objects to traverse through the queue(s) is

too high. We demonstrate the importance of QD by adding

a small probationary FIFO queue and a metadata-only ghost

queue to five state-of-the-art eviction algorithms. Evalua-

tions show that QD-enhanced ARC can reduce ARC’s miss

ratio by up to 59.8%, and QD-enhanced LIRS can reduce

LIRS’s miss ratio by up to 49.8%. On average, QD-enhanced

algorithms reduce the miss ratio from the corresponding

state-of-the-art algorithm by 2.7% on the 5307 traces. Note

that the seemingly small improvement is huge due to the

large number of traces.We further demonstrate a simple evic-

tion algorithm QD-LP-FIFO by applying the aforementioned

Lazy Promotion and Quick Demotion on top of FIFO. QD-

LP-FIFO is simple yet efficient. Our evaluations show that

QD-LP-FIFO achieves lower miss ratios than state-of-the-art

eviction algorithms. For example, QD-LP-FIFO reduces the

miss ratios of LIRS and LeCaR by 1.6% and 4.3% on average.

We believe that further innovations in better Lazy Promo-

tion and Quick Demotion techniques will lead to a class

of simple and efficient eviction algorithms. Moreover, we

envision that future eviction algorithms can be designed like

building a LEGO by adding different LP and QD techniques

to a base algorithm such as FIFO.

This paper makes two main contributions:

• Contrary to the common belief that LRU approximations

are less efficient, we show that FIFO with Lazy Promotion

(e.g., FIFO-Reinsertion/CLOCK) achieves a lower miss ratio

than LRU on a large collection of workloads.

• We demonstrate that Quick Demotion is critical for cache

efficiency. A simple QD technique, e.g., a probationary

Figure 1: The cache abstraction.

Table 1: Datasets used in this work (traces with less than 1

million requests or 10,000 objects are excluded).

trace

collections

approx

time

#

traces

cache

type

request

(million)

object

(million)

MSR [58, 59] 2007 13 block 410 74

FIU [49] 2008 9 block 514 20

Cloudphysics[73] 2015 106 block 2,114 492

Major CDN 2018 219 object 3,728 298

Tencent Photo [91] 2018 2 object 5,650 1,038

Wiki CDN [77] 2019 3 object 2,863 56

Tencent CBS [87, 88] 2020 4030 block 33,690 551

Alibaba [1, 51, 74] 2020 652 block 19,676 1702

Twitter [82] 2020 54 KV 195,441 10,650

Social Network 2020 219 KV 549,784 42,898

FIFO, can reduce the miss ratio of state-of-the-art algo-

rithms by up to 59.8%.

2 Why FIFO and What it needs

The benefits of FIFO over LRU have been explored in

many previous works [37, 38, 82, 83]. For example, FIFO has

less metadata (if any) and requires no metadata update on

each cache hit, and thus is faster and more scalable than

LRU. In contrast, LRU requires updating six pointers on each

cache hit, which is not friendly for modern computer ar-

chitecture due to random memory accesses and extensive

locking. Moreover, FIFO is always the first choice when im-

plementing a flash cache because it does not incur write

amplification [15, 22, 55, 84]. Although FIFO has through-

put and scalability benefits, it is common wisdom that FIFO

provides lower efficiency (higher miss ratio) than LRU.

To understand the various factors that affect the miss ra-

tio, we introduce a cache abstraction (Fig. 1). A cache can

be viewed as a logically total-ordered queue with four op-

erations: insertion, removal, promotion, and demotion.
Objects in the cache can be compared and ordered based on

somemetric (e.g., time since the last request), and the eviction

algorithm evicts the least valuable object based on the met-

ric. Insertion and removal are user-controlled operations,

where removal can either be directly invoked by the user

or indirectly via the use of time-to-live (TTL). Promotion
and demotion are internal operations of the cache used to

maintain the logical ordering between objects.

We observe that most eviction algorithms use promotion
to update the ordering between objects. For example, all the

LRU-based algorithms promote objects to the head of the

2

M
SR Fi

u
Cl

ou
dP

hy
si

cs
M

aj
or

 C
D

N
te

nc
en

t P
ho

to
W

ik
i

Te
nc

en
t C

BS
Al

ib
ab

a
Tw

itt
er

So
ci

al
 N

et
w

or
k0.0

0.5

1.0

Fr
ac

tio
n

of
 tr

ac
es

w

ith
 a

 lo
w

er
 m

is
s

ra
tio

LRU FIFO-Reinsertion

(a) FIFO-Reinsertion, small

M
SR Fi

u
Cl

ou
dP

hy
si

cs
M

aj
or

 C
D

N
te

nc
en

t P
ho

to
W

ik
i

Te
nc

en
t C

BS
Al

ib
ab

a
Tw

itt
er

So
ci

al
 N

et
w

or
k0.0

0.5

1.0

Fr
ac

tio
n

of
 tr

ac
es

w

ith
 a

 lo
w

er
 m

is
s

ra
tio

LRU FIFO-Reinsertion

(b) FIFO-Reinsertion, large

M
SR Fi

u
Cl

ou
dP

hy
si

cs
M

aj
or

 C
D

N
te

nc
en

t P
ho

to
W

ik
i

Te
nc

en
t C

BS
Al

ib
ab

a
Tw

itt
er

So
ci

al
 N

et
w

or
k0.0

0.5

1.0

Fr
ac

tio
n

of
 tr

ac
es

w

ith
 a

 lo
w

er
 m

is
s

ra
tio

LRU CLOCK-2

(c) 2-bit CLOCK, small size

M
SR Fi

u
Cl

ou
dP

hy
si

cs
M

aj
or

 C
D

N
te

nc
en

t P
ho

to
W

ik
i

Te
nc

en
t C

BS
Al

ib
ab

a
Tw

itt
er

So
ci

al
 N

et
w

or
k0.0

0.5

1.0

Fr
ac

tio
n

of
 tr

ac
es

w

ith
 a

 lo
w

er
 m

is
s

ra
tio

LRU CLOCK-2

(d) 2-bit CLOCK, large size (e) LP leads to QD

Figure 2: (a,b,c,d): the fraction of the 5307 traces on which an algorithm has a lower miss ratio when comparing LRU with

FIFO-Reinsertion (1-bit CLOCK) and 2-bit CLOCK. FIFO-Reinsertion and 2-bit CLOCK are more efficient than LRU, with a

lower miss ratio on most traces. (e): Lazy Promotion often leads to Quick Demotion. Using FIFO-Reinsertion as an example,

the newly-inserted object 𝐺 will be pushed down by both objects requested before (e.g., 𝐵, 𝐷) and after 𝐺 . In contrast, only

objects requested after 𝐺 can push 𝐺 down in LRU.

queue on cache hits, which we call eager promotion. Mean-

while, demotion is performed implicitly: when an object is

promoted, other objects are passively demoted. We call this

process passive demotion, a slow process as objects need

to traverse through the cache queue before being evicted.

However, we will show that instead of eager promotion and

passive demotion, eviction algorithms should use Lazy Pro-

motion (§3) and Quick Demotion (§4).

3 Lazy Promotion

To avoid popular objects from being evicted while not

incurring much performance overhead, we propose adding

Lazy Promotion on top of FIFO (called LP-FIFO), which

promotes objects only when they are about to be evicted. Lazy
Promotion aims to retain popular objects with minimal ef-

fort. An example is FIFO-Reinsertion
1
: an object is reinserted

at eviction time if it has been requested while in the cache.

LP-FIFO has several benefits over eager promotion (pro-

moting on every access) used in LRU-based algorithms. First,

LP-FIFO inherits FIFO’s throughput and scalability benefits

because few metadata operations are needed when an object

is requested. For example, FIFO-Reinsertion only needs to

update a Boolean field upon the first request to a cached

object without locking. Second, performing promotion at

eviction time allows the cache to make better decisions by

accumulating more information about the objects, e.g., how

many times an object has been requested.

To understand LP-FIFO’s efficiency, we performed a large-

scale simulation study on 5307 production traces from 10 data

sources (Table 1), which include open-source and proprietary

datasets collected between 2007 and 2020. The 10 datasets

contain 814 billion (6,386 TB) requests and 55.2 billion (533

TB) objects, and cover different types of caches, including

1
Note that FIFO-Reinsertion, 1-bit CLOCK, and Second Chance are different

implementations of the same eviction algorithm.

block, key-value (KV), and object caches. We further divide

the traces into block and web (including Memcached and

CDN). We choose small/large cache size as 0.1%/10% of the

number of unique objects in the trace.

We compare the miss ratios of LRU with two LP-FIFO

algorithms: FIFO-Reinsertion and 2-bit CLOCK. 2-bit CLOCK

tracks object frequency up to three, and an object’s frequency

decreases by one each time the CLOCK hand scans through

it. Objects with zero frequency are evicted.

Common wisdom suggests that these two LP-FIFO exam-

ples are LRU approximations and will exhibit higher miss

ratios than LRU
2
[11, 38, 43, 47, 60]. However, we found that

LP-FIFO often exhibits miss ratios lower than LRU.

Fig. 2 shows that FIFO-Reinsertion and 2-bit CLOCK are

better than LRU onmost traces. Specifically, FIFO-Reinsertion

is better than LRU on 9 and 7 of the 10 datasets using a small

and large cache size, respectively. Moreover, on half of the

datasets, more than 80% of the traces in each dataset favor

FIFO-Reinsertion over LRU at both sizes. On the two social

network datasets, LRU is better than FIFO-Reinsertion (espe-

cially at the large cache size). This is because most objects are

accessed more than once
3
, and using one bit to track object

access is insufficient. Therefore, when increasing the one

bit in FIFO-Reinsertion (CLOCK) to two bits (2-bit CLOCK),

2
We suspect this impression came from the 1960s when LRU and CLOCK

were designed for virtual memory page replacement. We conjecture that

CLOCK may not work as well as LRU for such workloads because LRU can

better adapt to sudden working set changes. According to Denning, memory

access patterns show abrupt changes between phases [27]. However, we do

not observe such patterns in the block and web cache workloads.

3
Many cache traces are collected after the first-layer cache, e.g., the CDN
cache is behind browser caches, and the block traces record requests after

the page cache. The two social network cache datasets used are from first-

layer caches, contributing to high object access frequencies. Moreover, the

high frequency could also come from the nature of being a social network

or key-value cache workload.

3

Table 2: The miss ratios of the algorithms in Fig. 3.

Algorithm/workload LRU ARC LHD Belady

MSR 0.5263 0.4899 0.5131 0.4438

Twitter 0.2005 0.1841 0.1756 0.1309

we observe that the number of traces favoring LP-FIFO in-

creases to around 70%. Across all datasets, 2-bit CLOCK is

better than FIFO on all datasets at the small cache size and 9

of the 10 datasets at the large cache size.

Two reasons contribute to LP-FIFO’s high efficiency. First,

Lazy Promotion often leads toQuick Demotion (§4). For

example, under LRU, a newly-inserted object 𝐺 is pushed

down the queue only by 1) new objects and 2) cached ob-

jects that are requested after𝐺 . However, besides the objects

requested after 𝐺 , the objects requested before 𝐺 (but have

not been promoted, e.g., 𝐵, 𝐷) also push 𝐺 down the queue

when using FIFO-Reinsertion (Fig. 2e). Second, compared

to promotion at each request, object ordering in LP-FIFO is

closer to the insertion order, which we conjecture is better

suited for many workloads that exhibit popularity decay —

old objects have a lower probability of getting a request.

While LP-FIFO surprisingly wins over LRU in miss ratio,

it cannot outperform state-of-the-art algorithms. We next

discuss another building block that bridges this gap.

4 Quick Demotion

Efficient eviction algorithms not only need to keep popular

objects in the cache but also need to evict unpopular objects

fast. In this section, we show that Quick Demotion (QD)

is critical for an efficient eviction algorithm, and it enables

FIFO-based algorithms to achieve state-of-the-art efficiency.

Because demotion happens passively in most eviction al-

gorithms, an object typically traverses through the cache

before being evicted. Such traversal gives each object a good

chance to prove its value to be kept in the cache. How-

ever, cache workloads often follow Zipf popularity distri-

bution [8, 15, 20, 82] with most objects being unpopular.

This is further exacerbated by 1) the scan and loop access

patterns in the block cache workloads [12, 65, 72], and 2) the

vast existence of dynamic and short-lived data, the use of

versioning in object names, and the use of short TTLs in the

web cache workloads [82]. We believe the opportunity cost of
new objects demonstrating their values is often too high: the
object being evicted at the tail of the queue may be more

valuable than the objects recently inserted.

Removing low-value objects faster is not a new idea and

has been discussed under various contexts, such as removing

scan pages [12, 45], correlated accesses [47], and one-hit

wonders [2, 54]. These observations have inspired eviction

algorithms such as 2Q [47], MQ [92], ARC [56], SLRU [42],

101 103
Object frequency

0.00

0.25

0.50

0.75

1.00

Ca
ch

e
re

so
ur

ce
 u

sa
ge

 (C
DF

) LRU ARC LHD Belady

(a) MSR trace (hm0)

101 103 105 107
Object frequency

0.00

0.25

0.50

0.75

1.00

Ca
ch

e
re

so
ur

ce
 u

sa
ge

 (C
DF

) LRU ARC LHD Belady

(b) Twitter trace (cluster52)

Figure 3: Cache resource consumption by objects in different

algorithms. More efficient algorithms spend fewer resources

on unpopular objects.

Figure 4: An example of QD: add a probationary FIFO queue

to an existing cache.

LHD [12], and Hyperbolic [19]. However, we find that the

demotion in existing algorithms is often not fast enough.

We study how different algorithms spend cache resources

on objects of varying popularity. The resource consump-

tion of an object is calculated using 𝐶𝑜𝑏 𝑗 =
∑(𝑇𝑒𝑣𝑖𝑐𝑡𝑖𝑜𝑛 −

𝑇𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛) ×𝑆𝑜𝑏 𝑗 similar to the idea in the previous work [12].

Throughout this work, we assume objects to be uniform in

size so that we can focus on the effect of access patterns

on efficiency. Fig. 3 shows two representative traces, and

Table 2 shows the corresponding miss ratios. ARC and LHD

often spend fewer resources on unpopular objects than LRU

and show lower miss ratios. Between ARC and LHD, ARC

spends fewer resources on unpopular objects and has a no-

tably lower miss ratio than LHD on the MSR trace. We have

a similar observation on the Twitter trace as well. Moreover,

among all four algorithms, Belady [14] always spends the

fewest resources on unpopular objects and has significantly

lower miss ratios. In summary, efficient algorithms often

spend fewer resources on unpopular objects.

To further illustrate the importance of Quick Demotion,

we add a simple QD technique on top of state-of-the-art

eviction algorithms (Fig. 4). The QD technique consists of

a small probationary FIFO queue storing cached data and a

ghost FIFO queue storing metadata of objects evicted from

the probationary FIFO queue. The probationary FIFO queue

uses 10% of the cache space and acts as a filter for unpopular

objects: objects not requested after insertion are evicted early

from the FIFO queue. The main cache runs a state-of-the-art

algorithm and uses 90% of the space. And the ghost FIFO

stores as many entries as the main cache. Upon a cache miss,

the object is written into the probationary FIFO queue unless

4

ARC LIRS CACHEUS LHD LeCaR QD-LP-FIFO
0.0

0.1

0.2

0.3

M
iss

 R
at

io
 R

ed
uc

tio
n

Fr
om

 F
IF

O QD Original

(a) Block workloads, small size (0.1% of all objects)

ARC LIRS CACHEUS LHD LeCaR QD-LP-FIFO0.0

0.1

0.2

M
iss

 R
at

io
 R

ed
uc

tio
n

Fr
om

 F
IF

O QD Original

(b) Block workloads, large size (10% of all objects)

ARC LIRS CACHEUS LHD LeCaR QD-LP-FIFO

−0.1

0.0

0.1

0.2

M
iss

 R
at

io
 R

ed
uc

tio
n

Fr
om

 F
IF

O QD Original

(c) Web workloads, small size (0.1% of all objects)

ARC LIRS CACHEUS LHD LeCaR QD-LP-FIFO
0.0

0.1

0.2

0.3

M
iss

 R
at

io
 R

ed
uc

tio
n

Fr
om

 F
IF

O QD Original

(d) Web workloads, large size (10% of all objects)

Figure 5: Evaluated on the 5307 traces, QD-enhanced algorithms outperform state-of-the-art algorithms at both small and large

cache sizes. QD-LP-FIFO achieves similar or better miss ratio reduction compared to state-of-the-art algorithms.

it is in the ghost FIFO queue, in which case, it is written into

the main cache. When the probationary FIFO queue is full,

if the object to evict has been accessed since insertion, it is

inserted into the main cache. Otherwise, it is evicted and

recorded in the ghost FIFO queue.

We add this FIFO-based QD technique to five state-of-the-

art eviction algorithms, ARC [56], LIRS [45], CACHEUS [65],

LeCaR [72] and LHD [12]. We used the open-source LHD

implementation from the authors, implemented the oth-

ers following the corresponding papers, and cross-checked

with open-source implementations
4
. We evaluated the QD-

enhanced and original algorithms on the 5307 traces. Because

the traces have a wide range of miss ratios, we choose to

present each algorithm’s miss ratio reduction from FIFO

calculated as

𝑚𝑟𝐹𝐼𝐹𝑂−𝑚𝑟𝑎𝑙𝑔𝑜

𝑚𝑟𝐹𝐼𝐹𝑂
.

Fig. 5 shows that the QD-enhanced algorithms further

reduce the miss ratio of each state-of-the-art algorithm on

almost all percentiles. For example, QD-ARC (QD-enhanced

ARC) reduces ARC’s miss ratio by up to 59.8% with a mean

reduction of 1.5% across all workloads on the two cache

sizes, QD-LIRS reduces LIRS’s miss ratio by up to 49.6% with

a mean of 2.2%, and QD-LeCaR reduces LeCaR’s miss ratio by

up to 58.8% with a mean of 4.5%. Note that achieving a large

miss ratio reduction on a large number of diverse traces is

non-trivial. For example, the best state-of-the-art algorithm,

ARC, can only reduce the miss ratio of LRU 6.2% on average.

The gap between the QD-enhanced algorithm and the

original algorithm is wider 1) when the state-of-the-art is

relatively weak, 2) when the cache size is large, and 3) on

4
All state-of-the-art algorithms are complex, and we found two different

open-source LIRS implementations used in previous works have bugs.

the web workloads. With a weaker state-of-the-art, the op-

portunity for improvement is larger, allowing QD to provide

more prominent benefits. For example, QD-LeCaR reduces

LeCaR’s miss ratios by 4.5% average, larger than the reduc-

tions on other state-of-the-art algorithms. When the cache

size is large, unpopular objects spend more time in the cache,

and Quick Demotion becomes more valuable. For example,

QD-ARC andARC have similar miss ratios on the blockwork-

loads at the small cache size. But QD-ARC reduces ARC’s

miss ratio by 2.3% on average at the large cache size. How-

ever, when the cache size is too large, e.g., 80% of the number

of objects in the trace, adding QD may increase the miss

ratio (not shown). At last, QD provides more benefits on the

web workloads than the block workloads, especially when

the cache size is small. We conjecture that web workloads

have more short-lived data and exhibit stronger popularity

decay, which leads to a more urgent need forQuick Demo-

tion. While Quick Demotion improves the efficiency of

most state-of-the-art algorithms, for a small subset of traces,

QD may increase the miss ratio when the cache size is small

because the probationary FIFO is too small to capture some

potentially popular objects.

Although adding the probationary FIFO improves effi-

ciency, it further increases the complexity of the already

complicated state-of-the-art algorithms. To reduce complex-

ity, we add the same QD technique on top of the 2-bit CLOCK

discussed in §3 and call itQD-LP-FIFO.QD-LP-FIFO uses two

FIFO queues to cache data and a ghost FIFO queue to track

evicted objects. It is not hard to see QD-LP-FIFO is simpler

than all state-of-the-art algorithms — it requires at most one

metadata update on a cache hit and no locking for any cache

operation. Therefore, we believe it will be faster and more

5

scalable than all state-of-the-art algorithms. Besides enjoy-

ing all the benefits of simplicity, QD-LP-FIFO also achieves

lower miss ratios than state-of-the-art algorithms (Fig. 5).

For example, compared to LIRS and LeCaR, QD-LP-FIFO re-

duces miss ratio by 1.6% and 4.3% on average respectively

across the 5307 traces. While the goal of this work is not to

propose a new eviction algorithm, QD-LP-FIFO illustrates

how we can build simple yet efficient eviction algorithms by

addingQuick Demotion and Lazy Promotion techniques

to a simple base eviction algorithm such as FIFO.

5 Discussions

LP and QD techniques. We have demonstrated reinser-

tion as an example of LP (§3) and the use of a small pro-

bationary FIFO queue as an example of QD (§4). However,

these are not the only techniques. For example, reinsertion

can leverage different metrics to decide whether the object

should be reinserted. Besides reinsertion, several other tech-

niques are often used to reduce promotion and improve

scalability, e.g., periodic promotion [62], batched promo-

tion [76], promoting old objects only [15], promoting with

try-lock [3]. Although these techniques do not fall into our

strict definition of Lazy Promotion (promotion on eviction),

many of them effectively retain popular objects from being

evicted. On the Quick Demotion side, besides the small

probationary FIFO queue, one can leverage other techniques

to define and discover unpopular objects such as Hyper-

bolic [19] and LHD [12]. Moreover, admission algorithms,

e.g., TinyLFU [33, 34], Bloom Filter [18, 54], probabilistic [15]

and ML-based [35] admission algorithms, can be viewed as

a form of QD — albeit some of them are too aggressive at

demotion (rejecting objects from entering the cache).

We remark that QD bears similarity with some genera-

tional garbage collection algorithms [28, 61] which sepa-

rately store short-lived and long-lived data in young-gen

and old-gen heaps. Therefore, ideas from garbage collection

may be borrowed to strengthen cache eviction algorithms.

We believe that the design of QD-LP-FIFO opens the door

to designing simple yet efficient cache eviction algorithms by

innovating on LP andQD techniques. Andwe envision future

eviction algorithms can be designed like building LEGO —

adding lazy promotion and qick demotion on top of a

base eviction algorithm.

Why “X” is not better than QD-LP-FIFO. Eviction al-

gorithms that use multiple queues (e.g., ARC, 2Q, and 2Q

variants in many production systems [4, 6, 7, 15]) share sim-

ilarities with QD-LP-FIFO. However, there are two major

differences between QD-LP-FIFO and previous works. First,

QD-LP-FIFO only uses FIFO queues, and promotion to a dif-

ferent queue (e.g., main cache) only happens when an object

is being evicted. Second, QD-LP-FIFO uses a tiny fixed-size

FIFO queue (10% of cache size) for Quick Demotion, while

previous works use much larger (e.g., 50% of cache size) or

adaptive queue sizes. Ideally, the adaptive algorithms (e.g.,

ARC) should provide similar or lower miss ratios thanQuick

Demotion. However, our study suggests otherwise. There

are a few reasons behind this. First, the adaptive algorithms’

methods to adjust queue size are not optimal. For ARC, we

observe that manually limiting the queue size and slowing

down the queue size adjustment often reduce miss ratios.

Second, Lazy Promotion is resistant to request bursts and

better suited for workloads with popularity decay (§3). We

observe that replacing the LRU queues in ARC with FIFO-

Reinsertion also reduces the miss ratio. In general, adaptive

algorithms, such as ARC and CACHEUS, adapt their param-

eters based on a limited number of past requests, which may

not predict the future well.

Limitations. Throughout this work, to focus on how ac-

cess patterns affect cache efficiency, we ignore other factors,

such as object size and TTL, which are important for web

cache workloads. While the Lazy Promotion and Quick

Demotion techniques we have discussed are not size-aware,

designing size-aware Lazy Promotion and Quick Demo-

tion techniques are worth pursuing in the future.

6 Conclusion

To the best of our knowledge, this is by far the most com-

prehensive eviction algorithm study. Contrary to the com-

mon belief, we discover that LP-FIFO (e.g., FIFO-Reinsertion)

is more efficient than LRU with lower miss ratios (in addition

to its well-known benefits on throughput and scalability).

Moreover, we demonstrate the importance of Quick Demo-

tion for efficient caching by adding a probationary FIFO

queue to five state-of-the-art eviction algorithms. The QD-

enhanced algorithms can further improve the state-of-the-art

algorithms’ efficiency. This study illustrates the importance

of lazy promotion andqick demotion for eviction algo-

rithms’ throughput and efficiency. And it demonstrates a new

LEGO-like approach to designing future eviction algorithms.

Acknowledgments

We thank the anonymous reviewers for their valuable

feedback. We also would like to thank the people and organi-

zations that have open-sourced and shared production traces.

We thank Cloudlab [31] for the infrastructure support for

running experiments. This work is funded in part by a Meta

Fellowship, and NFS grants CNS 1901410 and CNS 1956271.

We also thank the members of the PDL Consortium for their

interest, insights, feedback, and support.

Availability

The code we used is open-sourced at https://github.com/

TheSys-lab/HotOS23-QD-LP.

6

https://github.com/TheSys-lab/HotOS23-QD-LP
https://github.com/TheSys-lab/HotOS23-QD-LP

References

[1] Alibaba block-trace. https://github.com/alibaba/block-traces. Ac-

cessed: 2023-01-12.

[2] Better handling for one-hit-wonder objects. https://phabricator.

wikimedia.org/T144187. Accessed: 2021-12-06.

[3] Hhvm concurrent lru cache. https://github.com/facebook/hhvm/blob/

master/hphp/util/concurrent-lru-cache.h. Accessed: 2023-01-25.

[4] Memcached - a distributed memory object caching system. http://

memcached.org/. Accessed: 2021-12-06.

[5] Multi-gen lru. https://docs.kernel.org/admin-guide/mm/multigen_lru.

html. Accessed: 2023-01-12.

[6] Mysql 5.7 reference manual, 14.5.1 buffer pool. https://dev.mysql.com/

doc/refman/5.7/en/innodb-buffer-pool.html. Accessed: 2023-01-12.

[7] Page frame reclamation. https://www.kernel.org/doc/gorman/html/

understand/understand013.html. Accessed: 2023-01-16.

[8] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload Analysis of a Large-Scale Key-Value Store. In

Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference onMeasurement andModeling of Computer Systems,
SIGMETRICS ’12, pages 53–64, New York, NY, USA, 2012. Association

for Computing Machinery.

[9] Nirav Atre, Justine Sherry, WeinaWang, and Daniel S. Berger. Caching

with Delayed Hits. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, pages 495–513, New York, NY, USA, 2020. Association

for Computing Machinery.

[10] Jiwoo Bang, Chungyong Kim, Sunggon Kim, Qichen Chen, Cheongjun

Lee, Eun-Kyu Byun, Jaehwan Lee, and Hyeonsang Eom. Finer-LRU:

A Scalable Page Management Scheme for HPC Manycore Architec-

tures. In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 567–576, May 2021. ISSN: 1530-2075.

[11] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with Adaptive

Replacement. In 3rd USENIX Conference on File and Storage Technolo-
gies, FAST’04, 2004.

[12] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving

cache hit rate by maximizing hit density. In 15th USENIX symposium on
networked systems design and implementation, NSDI’18, pages 389–403,
2018.

[13] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to remove

cliffs in cache performance. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture, HPCA’15, pages 64–75,
Burlingame, CA, USA, February 2015. IEEE.

[14] L. A. Belady. A study of replacement algorithms for a virtual-storage

computer. IBM Systems Journal, 5(2):78–101, 1966.
[15] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya

Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,

Mor Harchol-Balter, and Gregory R. Ganger. The CacheLib caching

engine: Design and experiences at scale. In 14th USENIX symposium on
operating systems design and implementation, OSDI’20, pages 753–768.
USENIX Association, November 2020.

[16] Daniel S. Berger. Towards Lightweight and Robust Machine Learning

for CDN Caching. In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, Hotnets’18, pages 134–140, Redmond WA USA,

November 2018. ACM.

[17] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and

Mor Harchol-Balter. RobinHood: Tail latency aware caching – dy-

namic reallocation from Cache-Rich to Cache-Poor. In 13th USENIX
symposium on operating systems design and implementation, OSDI’18,
pages 195–212, Carlsbad, CA, October 2018. USENIX Association.

[18] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. Adapt-

Size: Orchestrating the hot object memory cache in a content delivery

network. In 14th USENIX symposium on networked systems design and
implementation, NSDI’17, pages 483–498, 2017.

[19] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. Hyper-

bolic caching: Flexible caching for web applications. In 2017 USENIX
annual technical conference, ATC’17, pages 499–511, Santa Clara, CA,
July 2017. USENIX Association.

[20] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching

and Zipf-like distributions: evidence and implications. In Proceedings.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies, pages 126–134 vol.1, New York, NY, USA, 1999.

IEEE.

[21] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy Caching Algo-

rithms. In USENIX Symposium on Internet Technologies and Systems,
USITS’97, Monterey, CA, December 1997. USENIX Association.

[22] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-

doski, James Hunter, and Mike Barnett. FASTER: A Concurrent Key-

Value Store with In-Place Updates. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, pages 275–290, Houston TX

USA, May 2018. ACM.

[23] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman.

Memshare: a dynamic multi-tenant key-value cache. In 2017 USENIX
annual technical conference, ATC’17, pages 321–334, Santa Clara, CA,
July 2017. USENIX Association.

[24] Fernando J Corbato. A paging experiment with the multics system.

Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE

PROJECT MAC, 1968.

[25] Michael DDahlin, Randolph YWang, Thomas EAnderson, andDavid A

Patterson. Cooperative caching: Using remote client memory to im-

prove file system performance. In Proceedings of the 1st USENIX confer-
ence on Operating Systems Design and Implementation, OSDI’94, pages
19–es, 1994.

[26] Peter J Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323–333, 1968.

[27] Peter J. Denning. Working Set Analytics. ACM Computing Surveys,
53(6):1–36, November 2021.

[28] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis.

Garbage-first garbage collection. In Proceedings of the 4th interna-
tional symposium on Memory management, pages 37–48, 2004.

[29] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H. Noh, Sang Lyul Min,

Yookun Cho, and Chong Sang Kim. LRFU: a spectrum of policies that

subsumes the least recently used and least frequently used policies.

IEEE Transactions on Computers, 50(12):1352–1361, December 2001.

[30] Dormando. Replacing the cache replacement algorithm in memcached.

https://memcached.org/blog/modern-lru/. Accessed: 2023-01-12.

[31] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The design and operation

of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC), pages 1–14, July 2019.

[32] Dominik Durner, Badrish Chandramouli, and Yinan Li. Crystal: a

unified cache storage system for analytical databases. Proceedings of
the VLDB Endowment, 14(11):2432–2444, July 2021.

[33] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben Manes. Adaptive

Software Cache Management. In Proceedings of the 19th International
Middleware Conference, pages 94–106, Rennes France, November 2018.

ACM.

[34] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU: A Highly Effi-

cient Cache Admission Policy. ACMTransactions on Storage, 13(4):1–31,

7

https://github.com/alibaba/block-traces
https://phabricator.wikimedia.org/T144187
https://phabricator.wikimedia.org/T144187
https://github.com/facebook/hhvm/blob/master/hphp/util/concurrent-lru-cache.h
https://github.com/facebook/hhvm/blob/master/hphp/util/concurrent-lru-cache.h
http://memcached.org/
http://memcached.org/
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://memcached.org/blog/modern-lru/

December 2017.

[35] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan

Stutsman, Mohammad Alizadeh, and Sachin Katti. Flashield: a hybrid

key-value cache that controls flash write amplification. In 16th USENIX
symposium on networked systems design and implementation, NSDI’19,
pages 65–78, Boston, MA, February 2019. USENIX Association.

[36] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,

Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. Ban-

dana: Using non-volatile memory for storing deep learning models. In

A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of machine
learning and systems, volume 1 of mlsys’20, pages 40–52, 2019.

[37] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat.

It’s time to revisit LRU vs. FIFO. In 12th USENIX workshop on hot topics
in storage and file systems, hotStorage’20. USENIX Association, July

2020.

[38] Bin Fan, David G Andersen, and Michael Kaminsky. MemC3: Com-

pact and concurrent MemCache with dumber caching and smarter

hashing. In 10th USENIX symposium on networked systems design and
implementation, NSDI’13, pages 371–384, 2013.

[39] Guanyu Feng, Huanqi Cao, Xiaowei Zhu, Bowen Yu, Yuanwei Wang,

Zixuan Ma, Shengqi Chen, and Wenguang Chen. TriCache: A User-

Transparent Block Cache Enabling High-Performance Out-of-Core

Processing with In-Memory Programs. In 16th USENIX Symposium on
Operating Systems Design and Implementation, OSDI’22, pages 395–411,
Carlsbad, CA, July 2022. USENIX Association.

[40] Alexander Fuerst and Prateek Sharma. FaasCache: keeping serverless

computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 386–400, Virtual USA, April
2021. ACM.

[41] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and Zhi-Li Zhang.

Raven: belady-guided, predictive (deep) learning for in-memory and

content caching. In Proceedings of the 18th International Conference
on emerging Networking EXperiments and Technologies, CoNEXT ’22,

pages 72–90, New York, NY, USA, November 2022. Association for

Computing Machinery.

[42] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev

Kumar, and Harry C. Li. An analysis of Facebook photo caching. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 167–181, New York, NY, USA, November

2013. Association for Computing Machinery.

[43] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: an effective

improvement of the CLOCK replacement. In Proceedings of the annual
conference on USENIX Annual Technical Conference, ATC’05, page 35,
USA, April 2005. USENIX Association.

[44] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong

Zhang. DULO: an effective buffer cache management scheme to exploit

both temporal and spatial locality. In Proceedings of the 4th conference
on USENIX Conference on File and Storage Technologies, volume 4 of

FAST’05, pages 8–8, 2005.
[45] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference

recency set replacement policy to improve buffer cache performance.

In ACM SIGMETRICS Performance Evaluation Review, volume 30 of

SIGMETRICS’02, pages 31–42, June 2002.
[46] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate

Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing key-

value stores with fast in-network caching. In Proceedings of the 26th
symposium on operating systems principles, SOSP ’17, pages 121–136,

New York, NY, USA, 2017. Association for Computing Machinery.

[47] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High

Performance Buffer Management Replacement Algorithm. In Pro-
ceedings of the 20th International Conference on Very Large Data Bases,

VLDB’94, pages 439–450, San Francisco, CA, USA, September 1994.

Morgan Kaufmann Publishers Inc.

[48] R. Karedla, J.S. Love, and B.G. Wherry. Caching strategies to improve

disk system performance. Computer, 27(3):38–46, March 1994.

[49] Ricardo Koller and Raju Rangaswami. I/o deduplication: Utilizing

content similarity to improve i/o performance. ACM Transactions on
Storage (TOS), 6(3):1–26, 2010.

[50] Jinhyung Koo, Jinwook Bae, Minjeong Yuk, Seonggyun Oh, Jungwoo

Kim, Jung-Soo Park, Eunji Lee, Bryan S. Kim, and Sungjin Lee. All-

Flash Array Key-Value Cache for Large Objects. In Proceedings of
the Eighteenth European Conference on Computer Systems, EuroSys
’23, pages 784–799, New York, NY, USA, May 2023. Association for

Computing Machinery.

[51] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. An in-depth

analysis of cloud block storage workloads in large-scale production.

In 2020 IEEE International Symposium on Workload Characterization
(IISWC), pages 37–47. IEEE, 2020.

[52] Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata Ausavarungnirun,

Xianzhang Chen, Changlong Li, Tei-Wei Kuo, and Chun Jason Xue.

CacheSifter: Sifting Cache Files for Boosted Mobile Performance and

Lifetime. In 20th USENIX Conference on File and Storage Technologies,
FAST’22, pages 445–459, 2022.

[53] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,

Vladimir Braverman, Xin Jin, and Ion Stoica. DistCache: Provable load

balancing for Large-Scale storage systems with distributed caching.

In 17th USENIX conference on file and storage technologies, FAST’19,
pages 143–157, Boston, MA, February 2019. USENIX Association.

[54] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic Nuggets in

Content Delivery. ACM SIGCOMM Computer Communication Review,
45(3):52–66, July 2015.

[55] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng

Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beck-

mann, and Gregory R. Ganger. Kangaroo: Theory and practice of

caching billions of tiny objects on flash. In ACM Transactions on
Storage, volume 18 of TOS’22, August 2022.

[56] Nimrod Megiddo and Dharmendra S Modha. ARC: A self-tuning, low

overhead replacement cache. In 2nd USENIX conference on file and
storage technologies, FAST’03, 2003.

[57] Kianoosh Mokhtarian and Hans-Arno Jacobsen. Caching in video

CDNs: building strong lines of defense. In Proceedings of the Ninth
European Conference on Computer Systems - EuroSys ’14, EuroSys’14,
pages 1–13, Amsterdam, The Netherlands, 2014. ACM Press.

[58] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. MSR

Cambridge traces (SNIA IOTTA trace set 388). In Geoff Kuenning,

editor, SNIA IOTTA Trace Repository. Storage Networking Industry

Association, March 2007.

[59] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write

off-loading: Practical power management for enterprise storage. In

6th USENIX Conference on File and Storage Technologies (FAST 08), San
Jose, CA, February 2008. USENIX Association.

[60] Victor F. Nicola, Asit Dan, and Daniel M. Dias. Analysis of the gen-

eralized clock buffer replacement scheme for database transaction

processing. In ACM SIGMETRICS Performance Evaluation Review, vol-
ume 20 of SIGMETRICS’92, pages 35–46, June 1992.

[61] Paula Pufek, Hrvoje Grgić, and Branko Mihaljević. Analysis of garbage

collection algorithms and memory management in java. In 2019 42nd
International Convention on Information and Communication Technol-
ogy, Electronics and Microelectronics (MIPRO), pages 1677–1682. IEEE,
2019.

[62] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li, Xiaosong Ma,

Qi Chen, Mao Yang, and Yinlong Xu. Frozenhot cache: Rethinking

cache management for modern software. In Twenty-third EuroSys

8

Conference, EuroSys’23, New York, NY, USA, 2023. Association for

Computing Machinery.

[63] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and

Kannan Ramchandran. EC-Cache:load-balanced,low-latency cluster

caching with online erasure coding. In 12th USENIX symposium on
operating systems design and implementation, OSDI’16, pages 401–417,
2016.

[64] Liana V. Rodriguez, Alexis Gonzalez, Pratik Poudel, Raju Rangaswami,

and Jason Liu. Unifying the data center caching layer: Feasible? Prof-

itable? In Proceedings of the 13th ACM workshop on hot topics in storage
and file systems, HotStorage ’21, pages 50–57, New York, NY, USA,

2021. Association for Computing Machinery.

[65] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju

Rangaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. Learning

Cache Replacement with CACHEUS. In 19th USENIX Conference on File
and Storage Technologies, FAST’21, pages 341–354. USENIXAssociation,

February 2021.

[66] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Har-

shad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger,

Thomas F. Wenisch, and Amin Vahdat. CliqueMap: productionizing

an RMA-based distributed caching system. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM’21, pages 93–105, Virtual

Event USA, August 2021. ACM.

[67] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. EELRU: simple

and effective adaptive page replacement. ACM SIGMETRICS Perfor-
mance Evaluation Review, 27(1):122–133, May 1999.

[68] Alan Jay Smith. Sequentiality and prefetching in database systems.

ACM Transactions on Database Systems, 3(3):223–247, September 1978.

[69] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd,

Soudeh Ghorbani, Changhoon Kim, Aditya Akella, Arvind Krishna-

murthy, Emmett Witchel, and others. Learning relaxed belady for

content distribution network caching. In 17th USENIX symposium on
networked systems design and implementation, NSDI’20, pages 529–544,
2020.

[70] Aditya Sundarrajan, Mingdong Feng, Mangesh Kasbekar, and

Ramesh K. Sitaraman. Footprint Descriptors: Theory and Practice

of Cache Provisioning in a Global CDN. In Proceedings of the 13th
International Conference on emerging Networking EXperiments and
Technologies, CoNEXT’17, pages 55–67, Incheon Republic of Korea,

November 2017. ACM.

[71] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.

RIPQ: Advanced photo caching on flash for facebook. In 13th USENIX
Conference on File and Storage Technologies, FAST’15, pages 373–386,
2015.

[72] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons,

Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan. Driving

cache replacement with ML-based LeCaR. In 10th USENIX workshop
on hot topics in storage and file systems, hotStorage’18, Boston, MA,

July 2018. USENIX Association.

[73] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan

Ahmad. Efficient MRC construction with SHARDS. In 13th USENIX
conference on file and storage technologies, FAST’15, pages 95–110, Santa
Clara, CA, February 2015. USENIX Association.

[74] Qiuping Wang, Jinhong Li, Tao Ouyang, Chao Shi, and Lilong Huang.

Separating data via block invalidation time inference for write am-

plification reduction in {Log-Structured} storage. In 20th USENIX
Conference on File and Storage Technologies (FAST 22), pages 429–444,
2022.

[75] Qiuping Wang, Jinhong Li, Wen Xia, Erik Kruus, Biplob Debnath,

and Patrick PC Lee. Austere flash caching with deduplication and

compression. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), ATC, pages 713–726, 2020.

[76] Alex Wiggins and Jimmy Langston. Enhancing the scalability of

memcached. Intel document, 2012.
[77] Analytics/data lake/traffic/caching. https://wikitech.wikimedia.org/

wiki/Analytics/Data_Lake/Traffic/Caching. Accessed: 2020-05-06.

[78] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagap-

pan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. The storage hierarchy is not a hierarchy:

Optimizing caching on modern storage devices with orthus. In 19th
USENIX conference on file and storage technologies, FAST’21, pages
307–323. USENIX Association, February 2021.

[79] Gang Yan and Jian Li. Towards Latency Awareness for Content Deliv-

ery Network Caching. ATC’22, pages 789–804, 2022.

[80] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani Wildani,

and Ymir Vigfusson. Mithril: mining sporadic associations for cache

prefetching. In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC ’17, pages 66–79, New York, NY, USA, September 2017.

Association for Computing Machinery.

[81] Juncheng Yang, Anirudh Sabnis, Daniel S. Berger, K. V. Rashmi, and

Ramesh K. Sitaraman. C2DN: How to harness erasure codes at the edge

for efficient content delivery. In 19th USENIX symposium on networked
systems design and implementation, NSDI’22, pages 1159–1177, Renton,
WA, April 2022. USENIX Association.

[82] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large scale analysis of

hundreds of in-memory cache clusters at Twitter. In 14th USENIX
symposium on operating systems design and implementation, OSDI’20,
pages 191–208. USENIX Association, November 2020.

[83] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-

efficient and scalable in-memory key-value cache for small objects. In

18th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI’21, pages 503–518. USENIX Association, April 2021.

[84] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer

Wolfmeister. CacheSack: Admission Optimization for Google Datacen-

ter Flash Caches. In 2022 USENIX Annual Technical Conference, ATC’22,
pages 1021–1036, Carlsbad, CA, July 2022. USENIX Association.

[85] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Opti-

mal Data Placement for Heterogeneous Cache, Memory, and Storage

Systems. In Proceedings of the ACM on Measurement and Analysis of
Computing Systems, volume 4 of SIGMETRICS’20, pages 1–27, May

2020.

[86] Lei Zhang, Juncheng Yang, Anna Blasiak, Mike McCall, and Ymir

Vigfusson. When is the CacheWarm? Manufacturing a Rule of Thumb.

2020.

[87] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang

Ji, and Bin Cheng. Tencent block storage traces (SNIA IOTTA trace

set 27917). In Geoff Kuenning, editor, SNIA IOTTA Trace Repository.
Storage Networking Industry Association, October 2018.

[88] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang

Ji, and Bin Cheng. OSCA: An Online-Model based cache allocation

scheme in cloud block storage systems. In 2020 USENIX Annual Techni-
cal Conference (USENIX ATC 20), pages 785–798. USENIX Association,

July 2020.

[89] Yuchao Zhang, Pengmiao Li, Zhili Zhang, Bo Bai, Gong Zhang, Wen-

dong Wang, Bo Lian, and Ke Xu. AutoSight: Distributed Edge Caching

in Short Video Network. IEEE Network, 34(3):194–199, May 2020.

[90] Chen Zhong, Xingsheng Zhao, and Song Jiang. LIRS2: an improved

LIRS replacement algorithm. In Proceedings of the 14th ACM Inter-
national Conference on Systems and Storage, SYSTOR’21, pages 1–12,
Haifa Israel, June 2021. ACM.

[91] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He, Rui Lan, Wenyan

Li, Wenji Liu, and Tianming Yang. Tencent photo cache traces (SNIA

IOTTA trace set 27476). In Geoff Kuenning, editor, SNIA IOTTA Trace
Repository. Storage Networking Industry Association, February 2016.

9

https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching
https://wikitech.wikimedia.org/wiki/Analytics/Data_Lake/Traffic/Caching

[92] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replace-

ment algorithm for second level buffer caches. In Proceedings of the
annual conference on USENIX Annual Technical Conference, ATC’01,
pages 91–104, USA, 2001. USENIX Association.

10

	Abstract
	1 Introduction
	2 Why FIFO and What it needs
	3 Lazy Promotion
	4 Quick Demotion
	5 Discussions
	6 Conclusion
	References

